4.4 Reduce类

4.4.1 Reduce介绍

整完了Map,接下来就是Reduce了。YarnChild.main()—>ReduceTask.run()。ReduceTask.run方法開始和MapTask类似,包含initialize()初始化,依据情况看是否调用runJobCleanupTask(),runTaskCleanupTask()等。之后进入正式的工作,主要有这么三个步骤:Copy、Sort、Reduce。

4.4.2 Copy

Copy就是从运行各个Map任务的节点获取map的输出文件。这是由ReduceTask.ReduceCopier 类来负责。ReduceCopier对象负责将Map函数的输出拷贝至Reduce所在机器。假设大小超过一定阈值就写到磁盘,否则放入内存,在远程拷贝数据的同一时候,Reduce Task启动了两个后台线程对内存和磁盘上的文件进行合并,防止内存使用过多和磁盘文件过多。

Step1:

首先在ReduceTask的run方法中,通过例如以下配置来mapreduce.job.reduce.shuffle.consumer.plugin.class装配shuffle的plugin。默认的实现是Shuffle类:

1     Class<? extends ShuffleConsumerPlugin> clazz = job.getClass(MRConfig.SHUFFLE_CONSUMER_PLUGIN, Shuffle.class, ShuffleConsumerPlugin.class);
7 shuffleConsumerPlugin = ReflectionUtils.newInstance(clazz, job);
9 LOG.info("Using ShuffleConsumerPlugin: " + shuffleConsumerPlugin);

Step2:

初始化上述的plugin后,运行其run方法,得到RawKeyValueIterator的实例。

run方法的运行过程例如以下:

Step2.1:

量化Reduce的事件数目:

1     int eventsPerReducer = Math.max(MIN_EVENTS_TO_FETCH, MAX_RPC_OUTSTANDING_EVENTS / jobConf.getNumReduceTasks());
3 int maxEventsToFetch = Math.min(MAX_EVENTS_TO_FETCH, eventsPerReducer);

Step2.2:

生成map的完毕状态获取线程,并启动此线程:

 final EventFetcher<K,V> eventFetcher = new EventFetcher<K,V>(reduceId, umbilical, scheduler, this, maxEventsToFetch);

  eventFetcher.start(); 

获取已经完毕的Map信息,如Map的host、mapId等放入ShuffleSchedulerImpl中的Set<MapHost>中便于以下进行数据的拷贝传输。

1       URI u = getBaseURI(reduceId, event.getTaskTrackerHttp());
3 addKnownMapOutput(u.getHost() + ":" + u.getPort(),
5 u.toString(),
7 event.getTaskAttemptId());
9 maxMapRuntime = Math.max(maxMapRuntime, event.getTaskRunTime());

Step2.3:

在Shuffle类中启动初始化Fetcher线程组,并启动:

 1     boolean isLocal = localMapFiles != null;
2
3 final int numFetchers = isLocal ? 1 :
4
5 jobConf.getInt(MRJobConfig.SHUFFLE_PARALLEL_COPIES, 5);
6
7 Fetcher<K,V>[] fetchers = new Fetcher[numFetchers];
8
9 if (isLocal) {
10
11 fetchers[0] = new LocalFetcher<K, V>(jobConf, reduceId, scheduler,
12
13 merger, reporter, metrics, this, reduceTask.getShuffleSecret(),
14
15 localMapFiles);
16
17 fetchers[0].start();
18
19 } else {
20
21 for (int i=0; i < numFetchers; ++i) {
22
23 fetchers[i] = new Fetcher<K,V>(jobConf, reduceId, scheduler, merger,
24
25 reporter, metrics, this,
26
27 reduceTask.getShuffleSecret());
28
29 fetchers[i].start();
30
31 }
32
33 }

线程的run方法就是进行数据的远程拷贝:

 1     try {
3 // If merge is on, block
5 merger.waitForResource();
8
9 // Get a host to shuffle from
11 host = scheduler.getHost();
13 metrics.threadBusy();
17 // Shuffle
19 copyFromHost(host);
21 } finally {
23 if (host != null) {
25 scheduler.freeHost(host);
27 metrics.threadFree();
29 }
31 }

Step2.4:

来看下这个copyFromHost方法。主要是就是使用HttpURLConnection,实现远程数据的传输。

建立连接之后,从接收到的Stream流中读取数据。每次读取一个map文件。

1     TaskAttemptID[] failedTasks = null;
2
3 while (!remaining.isEmpty() && failedTasks == null) {
4
5 failedTasks = copyMapOutput(host, input, remaining);
6
7 }

上面的copyMapOutput方法中,每次读取一个mapid,依据MergeManagerImpl中的reserve函数,检查map的输出是否超过了mapreduce.reduce.memory.totalbytes配置的大小,此配置的默认值

是当前Runtime的maxMemory*mapreduce.reduce.shuffle.input.buffer.percent配置的值,Buffer.percent的默认值为0.90。

假设mapoutput超过了此配置的大小时,生成一个OnDiskMapOutput实例。在接下来的操作中,map的输出写入到local暂时文件里。

假设没有超过此大小,生成一个InMemoryMapOutput实例。在接下来操作中,直接把map输出写入到内存。

最后,运行ShuffleScheduler.copySucceeded完毕文件的copy,调用mapout.commit函数,更新状态或者触发merge操作。

Step2.5:

等待上面全部的拷贝完毕之后,关闭相关的线程。

 1    eventFetcher.shutDown();
2
3 // Stop the map-output fetcher threads
4 for (Fetcher<K,V> fetcher : fetchers) {
5 fetcher.shutDown();
6 }
7
8 // stop the scheduler
9 scheduler.close();
10
11 copyPhase.complete(); // copy is already complete
12 taskStatus.setPhase(TaskStatus.Phase.SORT);
13 reduceTask.statusUpdate(umbilical);

Step2.6:

运行终于的merge操作,由Shuffle中的MergeManager完毕:

 1 public RawKeyValueIterator close() throws Throwable {
2
3 // Wait for on-going merges to complete
4
5 if (memToMemMerger != null) {
6
7 memToMemMerger.close();
8
9 }
10
11 inMemoryMerger.close();
12
13 onDiskMerger.close();
14
15
16
17 List<InMemoryMapOutput<K, V>> memory =
18
19 new ArrayList<InMemoryMapOutput<K, V>>(inMemoryMergedMapOutputs);
20
21 inMemoryMergedMapOutputs.clear();
22
23 memory.addAll(inMemoryMapOutputs);
24
25 inMemoryMapOutputs.clear();
26
27 List<CompressAwarePath> disk = new ArrayList<CompressAwarePath>(onDiskMapOutputs);
28
29 onDiskMapOutputs.clear();
30
31 return finalMerge(jobConf, rfs, memory, disk);
32
33 }

Step3:

释放资源。

mapOutputFilesOnDisk.clear();

Copy完成。

4.4.3 Sort

Sort(事实上相当于合并)就相当于排序工作的一个延续,它会在全部的文件都拷贝完成后进行。使用工具类Merger归并全部的文件。经过此过程后,会产生一个合并了全部(全部并不准确)Map任务输出文件的新文件,而那些从其它各个server搞过来的 Map任务输出文件会删除。依据hadoop是否分布式来决定调用哪种排序方式。

在上面的4.3.2节中的Step2.4结束之后就会触发此操作。

4.4.4 Reduce

经过上面的步骤之后,回到ReduceTask中的run方法继续往下运行,调用runNewReducer。创建reducer:

1 org.apache.hadoop.mapreduce.Reducer<INKEY,INVALUE,OUTKEY,OUTVALUE> reducer =
2
3 (org.apache.hadoop.mapreduce.Reducer<INKEY,INVALUE,OUTKEY,OUTVALUE>)
4
5 ReflectionUtils.newInstance(taskContext.getReducerClass(), job);

并运行其run方法,此run方法就是我们的org.apache.hadoop.mapreduce.Reducer中的run方法。

 1 public void run(Context context) throws IOException, InterruptedException {
2
3 setup(context);
4
5 try {
6
7 while (context.nextKey()) {
8
9 reduce(context.getCurrentKey(), context.getValues(), context);
10
11 // If a back up store is used, reset it
12
13 Iterator<VALUEIN> iter = context.getValues().iterator();
14
15 if(iter instanceof ReduceContext.ValueIterator) {
16
17 ((ReduceContext.ValueIterator<VALUEIN>)iter).resetBackupStore();
18
19 }
20
21 }
22
23 } finally {
24
25 cleanup(context);
26
27 }
28
29 }
30
31 }

while的循环条件是ReduceContext.nextKey()为真,这种方法就在ReduceContext中实现的,这种方法的目的就是处理下一个唯一的key,由于reduce方法的输入数据是分组的,所以每次都会处理一个key及这个key相应的全部value,又由于已经将全部的Map Task的输出拷贝过来并且做了排序,所以key同样的KV对都是挨着的。

    nextKey方法中,又会调用nextKeyValue方法来尝试去获取下一个key值,而且假设没数据了就会返回false,假设还有数据就返回true。防止获取反复的数据就在这里做的处理。

接下来就是调用用户自己定义的reduce方法了。

 1 public void reduce(Text key, Iterable<IntWritable> values,
2
3 Context context
4
5 ) throws IOException, InterruptedException {
6
7 int sum = 0;
8
9 for (IntWritable val : values) {
10
11 sum += val.get();
12
13 }
14
15 result.set(sum);
16
17 context.write(key, result);
18
19 }

-------------------------------------------------------------------------------

假设您看了本篇博客,认为对您有所收获,请点击右下角的 [推荐]

假设您想转载本博客,请注明出处

假设您对本文有意见或者建议,欢迎留言

感谢您的阅读,请关注我的兴许博客

Mapreduce运行过程分析(基于Hadoop2.4)——(三)的更多相关文章

  1. Mapreduce运行过程分析(基于Hadoop2.4)——(一)

    1 概述 该瞅瞅MapReduce的内部执行原理了,曾经仅仅知道个皮毛,再不搞搞,不然怎么死的都不晓得.下文会以2.4版本号中的WordCount这个经典样例作为分析的切入点.一步步来看里面究竟是个什 ...

  2. Mapreduce执行过程分析(基于Hadoop2.4)——(三)

    4.4 Reduce类 4.4.1 Reduce介绍 整完了Map,接下来就是Reduce了.YarnChild.main()—>ReduceTask.run().ReduceTask.run方 ...

  3. Mapreduce运行过程分析(基于Hadoop2.4)——(二)

    4.3 Map类    创建Map类和map函数.map函数是org.apache.hadoop.mapreduce.Mapper类中的定义的,当处理每一个键值对的时候,都要调用一次map方法,用户须 ...

  4. Mapreduce执行过程分析(基于Hadoop2.4)——(一)

    1 概述 该瞅瞅MapReduce的内部运行原理了,以前只知道个皮毛,再不搞搞,不然怎么死的都不晓得.下文会以2.4版本中的WordCount这个经典例子作为分析的切入点,一步步来看里面到底是个什么情 ...

  5. Mapreduce执行过程分析(基于Hadoop2.4)——(二)

    4.3 Map类 创建Map类和map函数,map函数是org.apache.hadoop.mapreduce.Mapper类中的定义的,当处理每一个键值对的时候,都要调用一次map方法,用户需要覆写 ...

  6. MapReduce过程详解(基于hadoop2.x架构)

    本文基于hadoop2.x架构详细描述了mapreduce的执行过程,包括partition,combiner,shuffle等组件以及yarn平台与mapreduce编程模型的关系. mapredu ...

  7. 基于Hadoop2.2.0版本号分布式云盘的设计与实现

    基于Hadoop2.2.0版本号分布式云盘的设计与实现 一.前言 在学习了hadoop2.2一个月以来,我重点是在学习hadoop2.2的HDFS.即是hadoop的分布式系统,看了非常久的源代码看的 ...

  8. 《Hadoop技术内幕》读书笔记——Task运行过程分析

    本文是董西成的Hadoop技术内幕一书的读书章节总结. 第八章 Task运行过程分析 所有Task需要周期性地向TaskTracker汇报最新进度和计数器值,而这正是由Reporter组件实现的,其中 ...

  9. 基于Hadoop2.7.3集群数据仓库Hive1.2.2的部署及使用

    基于Hadoop2.7.3集群数据仓库Hive1.2.2的部署及使用 HBase是一种分布式.面向列的NoSQL数据库,基于HDFS存储,以表的形式存储数据,表由行和列组成,列划分到列族中.HBase ...

随机推荐

  1. JavaSE-04 Java循环结构

    学习要点 while循环 do-while循环 for循环 循环 什么是循环 循环的要素 while循环 语法分析 案例 老师每天检查小强的学习任务是否合格,如果不合格,则继续进行. 老师给小强安排的 ...

  2. JAVA基础——网络编程之网络链接

    一.网络编程基本概念 1.OSI与TCP/IP体系模型 2.IP和端口 解决了文章最开始提到的定位的问题. IP在互联网中能唯一标识一台计算机,是每一台计算机的唯一标识(身份证):网络编程是和远程计算 ...

  3. Java开发者写SQL时常犯的10个错误

        首页 所有文章 资讯 Web 架构 基础技术 书籍 教程 我要投稿 更多频道 » - 导航条 - 首页 所有文章 资讯 Web 架构 基础技术 书籍 教程 我要投稿 更多频道 » - iOS ...

  4. IOS学习笔记37——ViewController生命周期详解

    在我之前的学习笔记中讨论过ViewController,过了这么久,对它也有了新的认识和体会,ViewController是我们在开发过程中碰到最多的朋友,今天就来好好认识一下它.ViewContro ...

  5. 安装Windows10+Ubentu18双系统

    1.先安装Windows系统,安装完成后,使用磁盘管理工具划分出一定的freespace空间留给linux安装系统用. 2.使用Universal-USB-Installer制作ubentu启动U盘. ...

  6. PHP基于phpqrcode类生成二维码的方法详解

    前期准备: 1.phpqrcode类文件下载,下载地址:https://sourceforge.net/projects/phpqrcode/2.PHP环境必须开启支持GD2扩展库支持(一般情况下都是 ...

  7. 厚溥教育1718部数据库连接作业答案,分装一个操作数据库而无需写SQL语句的函数

    <?php header("Content-type:text/html;charset=utf8"); //PHP操作数据库的函数 function phpsql($dbc ...

  8. Go:单元测试

    测试用的文件名必须以 _test.go 结尾: 测试用的函数名必须以 Test 开头,一般来说:Test+被测试的函数名(第一个字母必须大写): func TestXx(t *testing.T) { ...

  9. 条款7:为多太基类声明virtual析构函数

    NOTE: 1.polymorphic(多态性质的)base classes 应该声明一个virtual 析构函数.如果class带有任何virtual函数,它就应该拥有一个virtual析构函数. ...

  10. 【HIHOCODER 1576】 子树中的最小权值(线段树维护DFS序)

    描述 给定一棵N个节点的树,编号1~N.其中1号节点是根,并且第i个节点的权值是Vi. 针对这棵树,小Hi会询问小Ho一系列问题.每次小Hi会指定一个节点x,询问小Ho以x为根的子树中,最小的权值是多 ...