[luoguP1082] 同余方程(扩展欧几里得)
ax≡1(mod b)
这个式子就是 a * x % b == 1 % b
相当于 a * x - b * y == 1
只有当 gcd(a,b) == 1 时才有解,也就是说 ax + by = c 有解的充要条件是 c % gcd(a,b) == 0
一般,我们能够找到无数组解满足条件,但是一般是让你求解出最小的那个正整数解
即为 (x % b + b) % b),+b是为了保证不为负数
可以这样想 a * x % b == 1 % b
-> a * x % b == 1
-> (a * x % b) % b == 1
求 x 最小正整数,那么直接取膜就好。
——代码
#include <cstdio> int a, b, x, y, gcd; inline int exgcd(int a, int b, int &x, int &y)
{
if(!b){x = , y = ; return a;}
int r = exgcd(b, a % b, y, x);
y -= a / b * x;
return r;
} int main()
{
scanf("%d %d", &a, &b);
gcd = exgcd(a, b, x, y);
printf("%d", (x % b + b) % b);
return ;
}
[luoguP1082] 同余方程(扩展欧几里得)的更多相关文章
- [P1082][NOIP2012] 同余方程 (扩展欧几里得/乘法逆元)
最近想学数论 刚好今天(初赛上午)智推了一个数论题 我屁颠屁颠地去学了乘法逆元 然后水掉了P3811 和 P2613 (zcy吊打集训队!)(逃 然后才开始做这题. 乘法逆元 乘法逆元的思路大致就是a ...
- luogu P1082 同余方程 |扩展欧几里得
题目描述 求关于 x的同余方程 ax≡1(modb) 的最小正整数解. 输入格式 一行,包含两个正整数 a,ba,b,用一个空格隔开. 输出格式 一个正整数 x,即最小正整数解.输入数据保证一定有解. ...
- luogu1082 [NOIp2012]同余方程 (扩展欧几里得)
由于保证有解,所以1%gcd(x,y)=0,所以gcd(x,y)=1,直接做就行了 #include<bits/stdc++.h> #define pa pair<int,int&g ...
- poj 1061 扩展欧几里得解同余方程(求最小非负整数解)
题目可以转化成求关于t的同余方程的最小非负数解: x+m*t≡y+n*t (mod L) 该方程又可以转化成: k*L+(n-m)*t=x-y 利用扩展欧几里得可以解决这个问题: eg:对于方程ax+ ...
- 【数学】【NOIp2012】同余方程 题解 以及 关于扩展欧几里得与同余方程
什么是GCD? GCD是最大公约数的简称(当然理解为我们伟大的党也未尝不可).在开头,我们先下几个定义: ①a|b表示a能整除b(a是b的约数) ②a mod b表示a-[a/b]b([a/b]在Pa ...
- 【扩展欧几里得】NOIP2012同余方程
题目描述 求关于 x 的同余方程 ax ≡ 1 (mod b)的最小正整数解. 输入输出格式 输入格式: 输入只有一行,包含两个正整数 a, b,用一个空格隔开. 输出格式: 输出只有一行,包含一个正 ...
- 【Luogu】P1516青蛙的约会(线性同余方程,扩展欧几里得)
题目链接 定理:对于方程\(ax+by=c\),等价于\(a*x=c(mod b)\),有整数解的充分必要条件是c是gcd(a,b)的整数倍. ——信息学奥赛之数学一本通 避免侵权.哈哈. 两只青蛙跳 ...
- Intel Code Challenge Final Round (Div. 1 + Div. 2, Combined) C.Ray Tracing (模拟或扩展欧几里得)
http://codeforces.com/contest/724/problem/C 题目大意: 在一个n*m的盒子里,从(0,0)射出一条每秒位移为(1,1)的射线,遵从反射定律,给出k个点,求射 ...
- POJ2115 - C Looooops(扩展欧几里得)
题目大意 求同余方程Cx≡B-A(2^k)的最小正整数解 题解 可以转化为Cx-(2^k)y=B-A,然后用扩展欧几里得解出即可... 代码: #include <iostream> us ...
- 【数论】【扩展欧几里得】Codeforces 710D Two Arithmetic Progressions
题目链接: http://codeforces.com/problemset/problem/710/D 题目大意: 两个等差数列a1x+b1和a2x+b2,求L到R区间内重叠的点有几个. 0 < ...
随机推荐
- 牛客小白月赛5-I-区间(差分求前缀和+一次暴力统计)
题目描述 Apojacsleam喜欢数组. 他现在有一个n个元素的数组a,而他要对a[L]-a[R]进行M次操作: 操作一:将a[L]-a[R]内的元素都加上P 操作二:将a[L]-a[R]内的元素都 ...
- 命名管道实现进程间通信--石头、剪刀、布游戏 分类: linux 2014-06-01 22:50 467人阅读 评论(0) 收藏
下面这个程序利用命名管道实现进程间通信,模拟石头剪刀布游戏. 主进程为裁判进程,两个子进程为选手进程.裁判与选手间各建立一个命名管道. 进行100次出招,最后给出游戏胜负. #include < ...
- 16-1 WEB存储基本操作
<!doctype html> <html> <head> <meta charset="utf-8"> <title> ...
- 214 Shortest Palindrome 最短回文串
给一个字符串 S, 你可以通过在字符串前面添加字符将其转换为回文串.找到并返回可以用这种方式转换的最短回文串.例如:给出 "aacecaaa",返回 "aaacecaaa ...
- [转]如何在 TFS 中使用 Git
本文转自 http://www.cnblogs.com/stg609/p/3651688.html 对 Charley Blog 的代码进行版本控制的想法由来已久,在代码建立之初其实已经使用过 TFS ...
- Dev之GridControl详解
Dev控件中的表格控件GridControl控件非常强大.不过,一些细枝末节的地方有时候用起来不好找挺讨厌的.使用过程中,多半借助Demo和英文帮助文档.网上具体的使用方法也多半零碎.偶遇一个简单而且 ...
- 【RSA】在 ASP.NET Core中结合web前端JsEncrypt.JS使用公钥加密,.NET Core使用私钥解密;
有一个需求,前端web使用的是JsEncrypt把后端给的公钥对密码进行加密,然后后端对其进行解密: 使用的类库如下: 后端使用第三方开源类库Bouncy Castle进行RSA的加解密和生成PEM格 ...
- openID 无效
1.appid 和秘钥一定要是你目前正在测试公众号的数据,如果 appid 和 秘钥是测试账号的,而目标测试业务是在正式的公众号,及时能取到acces——token ,也会报无效的openid 遇到的 ...
- Objective-C Memory Management 内存管理 2
Objective-C Memory Management 内存管理 2 2.1 The Rules of Cocoa Memory Management 内存管理规则 (1)When you c ...
- OC语言Block 续
OC语言 Block 转载:http://blog.csdn.net/weidfyr/article/details/48138167 1.Block对象中的变量行为 结论: 在block代码块内部可 ...