bzoj 4503: 两个串【脑洞+FFT】
真实脑洞题
因为通配符所以导致t串实际有指数级别个,任何字符串相关算法都没有用
考虑一个新的匹配方法:设a串(模板串)长为n,从m串的i位置开始匹配:\( \sum_{i=0}{n-1}(a[j]-b[i+j])2a[j] \)
这个东西只有在从i开始的长为n的a串子串与b串完全匹配的时候才为0,因为首先如果两个字符相同,差的平方和才为0,令t中的'?'值为0,这样某一位为0就是这一位的字符匹配上或者a串的这一位通配
然后考虑优化这个n^2的东西
\]
\]
\]
前面的是常数,所以我们只需要考虑快速计算形如\( \sum_{i=0}^{n-1}a[j]b[i+j] \) 的东西即可,设na nb分别是a b数组倒过来(也就是reverse一下)
\]
\]
\]
\]
这样就两部分卷积可以用FFT优化了
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
using namespace std;
const int N=500005;
int n,m,bt,lm,re[N],tot;
double ans[N],sm;
char s[N],t[N];
struct cd
{
double a,b;
cd(double A=0,double B=0)
{
a=A,b=B;
}
cd operator + (const cd &x) const
{
return cd(a+x.a,b+x.b);
}
cd operator - (const cd &x) const
{
return cd(a-x.a,b-x.b);
}
cd operator * (const cd &x) const
{
return cd(a*x.a-b*x.b,a*x.b+b*x.a);
}
}a[N],b[N],a2[N],b2[N],na[N],nb[N],na2[N],nb2[N];
void dft(cd a[],int f)
{
for(int i=0;i<lm;i++)
if(i<re[i])
swap(a[i],a[re[i]]);
for(int i=1;i<lm;i<<=1)
{
cd wi=cd(cos(M_PI/i),f*sin(M_PI/i));
for(int k=0;k<lm;k+=(i<<1))
{
cd w=cd(1,0),x,y;
for(int j=0;j<i;j++)
{
x=a[j+k],y=w*a[i+j+k];
a[j+k]=x+y,a[i+j+k]=x-y;
w=w*wi;
}
}
}
if(f==-1)
for(int i=0;i<lm;i++)
a[i].a/=lm;
}
void fft(cd a[],cd b[])
{
dft(a,1);
dft(b,1);
for(int i=0;i<lm;i++)
a[i]=a[i]*b[i];
dft(a,-1);
}
int main()
{
scanf("%s%s",s,t);
m=strlen(s),n=strlen(t);
for(int i=0;i<n;i++)
a[i].a=(t[i]=='?')?0:t[i]-'a'+1,a2[i].a=a[i].a*a[i].a,sm+=a[i].a*a[i].a*a[i].a;
for(int i=0;i<m;i++)
b[i].a=s[i]-'a'+1,b2[i].a=b[i].a*b[i].a;
for(int i=0;i<m;i++)
na[i]=a[m-i-1],nb[i]=b[m-i-1],na2[i]=a2[m-i-1],nb2[i]=b2[m-i-1];
for(bt=0;(1<<bt)<=2*m;bt++);
lm=1<<bt;
for(int i=0;i<lm;i++)
re[i]=(re[i>>1]>>1)|((i&1)<<(bt-1));
fft(a,nb2);
fft(b2,na);
fft(a2,nb);
fft(b,na2);
for(int i=0;i<=m-n;i++)
{
ans[i]=sm+(int)(a[m-i-1].a+0.5)-2*(int)(a2[m-i-1].a+0.5);
if(i>0)
ans[i]+=(int)(b2[i-1].a+0.5)-2*(int)(b[i-1].a+0.5);
tot+=(ans[i]==0);
}
printf("%d\n",tot);
for(int i=0;i<=m-n;i++)
if(ans[i]==0)
printf("%d ",i);
return 0;
}
bzoj 4503: 两个串【脑洞+FFT】的更多相关文章
- BZOJ 4503 两个串(FFT)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=4503 [题目大意] 给出S串和T串,计算T在S中出现次数,T中有通配符'?'. [题解 ...
- BZOJ 4503: 两个串 [FFT]
4503: 两个串 题意:兔子们在玩两个串的游戏.给定两个只含小写字母的字符串S和T,兔子们想知道T在S中出现了几次, 分别在哪些位置出现.注意T中可能有"?"字符,这个字符可以匹 ...
- 【BZOJ 4503】4503: 两个串 (FFT)
4503: 两个串 Time Limit: 20 Sec Memory Limit: 256 MBSubmit: 497 Solved: 226 Description 兔子们在玩两个串的游戏.给 ...
- BZOJ.4503.两个串(FFT/bitset)
题目链接 \(Description\) 给定两个字符串S和T,求T在S中出现了几次,以及分别在哪些位置出现.T中可能有'?'字符,这个字符可以匹配任何字符. \(|S|,|T|\leq 10^5\) ...
- bzoj 4503 两个串
Description 兔子们在玩两个串的游戏.给定两个字符串S和T,兔子们想知道T在S中出现了几次, 分别在哪些位置出现.注意T中可能有“?”字符,这个字符可以匹配任何字符. Input 两行两个字 ...
- 【刷题】BZOJ 4503 两个串
Description 兔子们在玩两个串的游戏.给定两个字符串S和T,兔子们想知道T在S中出现了几次, 分别在哪些位置出现.注意T中可能有"?"字符,这个字符可以匹配任何字符. I ...
- bzoj 4503 两个串 快速傅里叶变换FFT
题目大意: 给定两个\((length \leq 10^5)\)的字符串,问第二个串在第一个串中出现了多少次.并且第二个串中含有单字符通配符. 题解: 首先我们从kmp的角度去考虑 这道题从字符串数据 ...
- bzoj 4503 两个串——FFT
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4503 翻转T,就变成卷积.要想想怎么判断. 因为卷积是乘积求和,又想到相等的话相减为0,所以 ...
- bzoj 4503 两个串 —— FFT
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4503 推式子即可: 不知怎的调了那么久,应该是很清晰的. 代码如下: #include< ...
随机推荐
- HDU 2009 整除的尾数 题解
Problem Description 一个整数,仅仅知道前几位,不知道末二位.被还有一个整数除尽了.那么该数的末二位该是什么呢? Input 输入数据有若干组,每组数据包括二个整数a,b(0&l ...
- APACHE局域网配置域名访问
/** * * @email 514320008@qq.com * @author jshaibozhong * */ 1,打开APACHE的目录 \Apache2\conf\extra\httpd ...
- C#连接池
C#数据库连接池 MySql SqlServer 查阅了一天的资料来学习MySql数据库连接池,终于在一篇博文上找到了,自己也整理了一下,希望对大家有用处 1. 建立连接池 1 using MySql ...
- ActiveMQ(三) 转
package pfs.y2017.m11.mq.activemq.demo03; import javax.jms.Connection; import javax.jms.ConnectionFa ...
- 一道有关switch-case题目
一道有关switch-case题目 /** * * @title:SwitchCase.java * @Package:com.you.hbxs.model * @Description:<h3 ...
- quilt - 制作patch的工具
quilt - 制作patch的工具 在尝试为openwrt做一个patch时,查到这个工具.openwrt官方已经有很详细的文档对步骤进行说明了. quilt并不是专为openwrt的开发工具.qu ...
- 如何使用Visual Studio构建libiconv
参考博文:How to Build libiconv with Microsoft Visual Studio - CodeProject libiconv源码下载地址:libiconv - GNU ...
- linux 查看权限
参考文章:http://www.linuxidc.com/Linux/2014-10/108114.htm Linux文件访问权限分为可读,可写和可执行三种. 可用ls -l命令查看,例: ls -l ...
- @class && #import
先前被问到@class和#import的区别,我很直白的说使用@class是对要引用的类进行一个声明,不让编译器报错,到后面要用的时候再引入相应的类,而#import则会引入类的所有实例变量和方法.接 ...
- 控制cms:CMSDropDownList的width
查找了一下kentico内部使用相关控件的代码,发现有2种方式,可以达到效果. 在我们自己的css class定义的地方,在class前面加上.cms-bootstrap .cms-bootstrap ...