Different Choices for Indexing

1. loc——通过行标签索引行数据

1.1 loc[1]表示索引的是第1行(index 是整数)

import pandas as pd
data = [[1,2,3],[4,5,6]]
index = [0,1]
columns=['a','b','c']
df = pd.DataFrame(data=data, index=index, columns=columns)
print df.loc[1]
'''
a 4
b 5
c 6
'''

1.2 loc[‘d’]表示索引的是第’d’行(index 是字符)

import pandas as pd
data = [[1,2,3],[4,5,6]]
index = ['d','e']
columns=['a','b','c']
df = pd.DataFrame(data=data, index=index, columns=columns)
print df.loc['d']
'''
a 1
b 2
c 3
'''

1.3 如果想索引列数据,像这样做会报错

import pandas as pd
data = [[1,2,3],[4,5,6]]
index = ['d','e']
columns=['a','b','c']
df = pd.DataFrame(data=data, index=index, columns=columns)
print df.loc['a']
'''
KeyError: 'the label [a] is not in the [index]'
'''

1.4 loc可以获取多行数据

import pandas as pd
data = [[1,2,3],[4,5,6]]
index = ['d','e']
columns=['a','b','c']
df = pd.DataFrame(data=data, index=index, columns=columns)
print df.loc['d':]
'''
a b c
d 1 2 3
e 4 5 6
'''

1.5 loc扩展——索引某行某列

import pandas as pd
data = [[1,2,3],[4,5,6]]
index = ['d','e']
columns=['a','b','c']
df = pd.DataFrame(data=data, index=index, columns=columns)
print df.loc['d',['b','c']]
'''
b 2
c 3
'''

1,6 loc扩展——索引某列

import pandas as pd
data = [[1,2,3],[4,5,6]]
index = ['d','e']
columns=['a','b','c']
df = pd.DataFrame(data=data, index=index, columns=columns)
print df.loc[:,['c']]
'''
c
d 3
e 6
'''

当然获取某列数据最直接的方式是df.[列标签],但是当列标签未知时可以通过这种方式获取列数据。



需要注意的是,dataframe的索引[1:3]是包含1,2,3的,与平时的不同。

2. iloc——通过行号获取行数据

2.1 想要获取哪一行就输入该行数字

import pandas as pd
data = [[1,2,3],[4,5,6]]
index = ['d','e']
columns=['a','b','c']
df = pd.DataFrame(data=data, index=index, columns=columns)
print df.loc[1]
'''
a 4
b 5
c 6
'''

2.2 通过行标签索引会报错

import pandas as pd
data = [[1,2,3],[4,5,6]]
index = ['d','e']
columns=['a','b','c']
df = pd.DataFrame(data=data, index=index, columns=columns)
print df.iloc['a']
'''
TypeError: cannot do label indexing on <class 'pandas.core.index.Index'> with these indexers [a] of <type 'str'>
'''

2.3 同样通过行号可以索引多行

import pandas as pd
data = [[1,2,3],[4,5,6]]
index = ['d','e']
columns=['a','b','c']
df = pd.DataFrame(data=data, index=index, columns=columns)
print df.iloc[0:]
'''
a b c
d 1 2 3
e 4 5 6
'''

2.4 iloc索引列数据

import pandas as pd
data = [[1,2,3],[4,5,6]]
index = ['d','e']
columns=['a','b','c']
df = pd.DataFrame(data=data, index=index, columns=columns)
print df.iloc[:,[1]]
'''
b
d 2
e 5
'''

3. ix——结合前两种的混合索引

3.1 通过行号索引

import pandas as pd
data = [[1,2,3],[4,5,6]]
index = ['d','e']
columns=['a','b','c']
df = pd.DataFrame(data=data, index=index, columns=columns)
print df.ix[1]
'''
a 4
b 5
c 6
'''

3.2 通过行标签索引

import pandas as pd
data = [[1,2,3],[4,5,6]]
index = ['d','e']
columns=['a','b','c']
df = pd.DataFrame(data=data, index=index, columns=columns)
print df.ix['e']
'''
a 4
b 5
c 6
'''

python库学习笔记——Pandas数据索引:ix、loc、iloc区别的更多相关文章

  1. python库学习笔记——分组计算利器:pandas中的groupby技术

    最近处理数据需要分组计算,又用到了groupby函数,温故而知新. 分组运算的第一阶段,pandas 对象(无论是 Series.DataFrame 还是其他的)中的数据会根据你所提供的一个或多个键被 ...

  2. python库学习笔记——爬虫常用的BeautifulSoup的介绍

    1. 开启Beautiful Soup 之旅 在这里先分享官方文档链接,不过内容是有些多,也不够条理,在此本文章做一下整理方便大家参考. 官方文档 2. 创建 Beautiful Soup 对象 首先 ...

  3. Neo4j学习笔记(2)——数据索引

    和关系数据库一样,Neo4j同样可以创建索引来加快查找速度. 在关系数据库中创建索引需要索引字段和指向记录的指针,通过索引可以快速查找到表中的行. 在Neo4j中,其索引是通过属性来创建,便于快速查找 ...

  4. python库学习笔记——BeautifulSoup处理子标签、后代标签、兄弟标签和父标签

    首先,我们来看一个简单的网页https://www.pythonscraping.com/pages/page3.html,打开后: 右键"检查"(谷歌浏览器)查看元素: 用导航树 ...

  5. python库学习笔记——re库:正则表达式入门(一)

    什么是正则表达式? 我们在处理文本文件的时候,会按照某种规则查找某些特定的字符串.比方我们希望从一堆电子档案中找到人员的电话号码整理成通讯录.于是,我们可以利用特定字符串的规律编程获得我们想要的信息. ...

  6. 【数据结构与算法Python版学习笔记】目录索引

    引言 算法分析 基本数据结构 概览 栈 stack 队列 Queue 双端队列 Deque 列表 List,链表实现 递归(Recursion) 定义及应用:分形树.谢尔宾斯基三角.汉诺塔.迷宫 优化 ...

  7. ArcGIS案例学习笔记_3_2_CAD数据导入建库

    ArcGIS案例学习笔记_3_2_CAD数据导入建库 计划时间:第3天下午 内容:CAD数据导入,建库和管理 目的:生成地块多边形,连接属性,管理 问题:CAD存在拓扑错误,标注位置偏移 教程:pdf ...

  8. 【原】Learning Spark (Python版) 学习笔记(三)----工作原理、调优与Spark SQL

    周末的任务是更新Learning Spark系列第三篇,以为自己写不完了,但为了改正拖延症,还是得完成给自己定的任务啊 = =.这三章主要讲Spark的运行过程(本地+集群),性能调优以及Spark ...

  9. 0003.5-20180422-自动化第四章-python基础学习笔记--脚本

    0003.5-20180422-自动化第四章-python基础学习笔记--脚本 1-shopping """ v = [ {"name": " ...

随机推荐

  1. 把 web 项目部署到 Linux 服务器上

    1.打开 eclipse,在已经完成的 web 项目上面点击右键,选择 export,然后选择导出成 war 包. 以部署 SMBMS 项目为例   2.项目打包成 war ,选择项目导出到的位置. ...

  2. 简述Centos系统启动流程

    1. Centos5 POST开机自检 运行CMOS中的BIOS程序,加载第一个启动磁盘的Bootloader 由Bootloader读取kernel 通过挂载临时根目录initramfs加载核心模块 ...

  3. C语言结构体用法

    结构体的定义: 方法一: struct student { char name[10]; int age; int number; }; struct student stu1; 方法二: struc ...

  4. 腾讯云:基于 Ubuntu 搭建 VNC 远程桌面服务

    基于 Ubuntu 搭建 VNC 远程桌面服务 前言 任务时间:5min ~ 10min 必要知识 本教程假设您已学习以下 Ubuntu 基本操作: 连接 SSH 执行命令 编辑文件 如果还没有掌握 ...

  5. CF2B The least round way

    [题解] 可以发现10的因数除了1和10之外只有2和5了,那么走过的路径上各个数字的2的因数个数之和.5的因数个数之和中较小的一个即是答案.这样的话DP即可.同时需要注意有0的情况,有0的时候有一个答 ...

  6. 备用交换机(cogs 8)

    [问题描述] n个城市之间有通讯网络,每个城市都有通讯交换机,直接或间接与其它城市连接.因电子设备容易损坏,需给通讯点配备备用交换机.但备用交换机数量有限,不能全部配备,只能给部分重要城市配置.于是规 ...

  7. [bzoj4987]Tree_树形dp

    Tree bzoj-4987 题目大意:给定一颗n个点的有边权的树,选出k个点,使得:$\sum\limits_{i=1}^{k-1}dis_idis_j$最小. 注释:$1\le n\le 3000 ...

  8. 用xtrabackup+binlog恢复误删除的数据库

    关键技术,数据库产生的二进制文件,在主库就是binlog在从库就是relay-log,用最新的物理备份可以新启动个新实例,可以模拟个从库,把主库的binlog复制到新的数据库实例上,利用主从复制和物理 ...

  9. eclipse 安装egit插件

    一.Eclipse上安装GIT插件EGit Eclipse的版本eclipse-java-helios-SR2-win32.zip(在Eclipse3.3版本找不到对应的 EGit插件,无法安装) E ...

  10. 多个线程对hashmap进行put操作的异常

    多个线程对hashmap进行put操作的异常 Exception in thread "Thread-0" java.lang.ClassCastException: java.u ...