Different Choices for Indexing

1. loc——通过行标签索引行数据

1.1 loc[1]表示索引的是第1行(index 是整数)

import pandas as pd
data = [[1,2,3],[4,5,6]]
index = [0,1]
columns=['a','b','c']
df = pd.DataFrame(data=data, index=index, columns=columns)
print df.loc[1]
'''
a 4
b 5
c 6
'''

1.2 loc[‘d’]表示索引的是第’d’行(index 是字符)

import pandas as pd
data = [[1,2,3],[4,5,6]]
index = ['d','e']
columns=['a','b','c']
df = pd.DataFrame(data=data, index=index, columns=columns)
print df.loc['d']
'''
a 1
b 2
c 3
'''

1.3 如果想索引列数据,像这样做会报错

import pandas as pd
data = [[1,2,3],[4,5,6]]
index = ['d','e']
columns=['a','b','c']
df = pd.DataFrame(data=data, index=index, columns=columns)
print df.loc['a']
'''
KeyError: 'the label [a] is not in the [index]'
'''

1.4 loc可以获取多行数据

import pandas as pd
data = [[1,2,3],[4,5,6]]
index = ['d','e']
columns=['a','b','c']
df = pd.DataFrame(data=data, index=index, columns=columns)
print df.loc['d':]
'''
a b c
d 1 2 3
e 4 5 6
'''

1.5 loc扩展——索引某行某列

import pandas as pd
data = [[1,2,3],[4,5,6]]
index = ['d','e']
columns=['a','b','c']
df = pd.DataFrame(data=data, index=index, columns=columns)
print df.loc['d',['b','c']]
'''
b 2
c 3
'''

1,6 loc扩展——索引某列

import pandas as pd
data = [[1,2,3],[4,5,6]]
index = ['d','e']
columns=['a','b','c']
df = pd.DataFrame(data=data, index=index, columns=columns)
print df.loc[:,['c']]
'''
c
d 3
e 6
'''

当然获取某列数据最直接的方式是df.[列标签],但是当列标签未知时可以通过这种方式获取列数据。



需要注意的是,dataframe的索引[1:3]是包含1,2,3的,与平时的不同。

2. iloc——通过行号获取行数据

2.1 想要获取哪一行就输入该行数字

import pandas as pd
data = [[1,2,3],[4,5,6]]
index = ['d','e']
columns=['a','b','c']
df = pd.DataFrame(data=data, index=index, columns=columns)
print df.loc[1]
'''
a 4
b 5
c 6
'''

2.2 通过行标签索引会报错

import pandas as pd
data = [[1,2,3],[4,5,6]]
index = ['d','e']
columns=['a','b','c']
df = pd.DataFrame(data=data, index=index, columns=columns)
print df.iloc['a']
'''
TypeError: cannot do label indexing on <class 'pandas.core.index.Index'> with these indexers [a] of <type 'str'>
'''

2.3 同样通过行号可以索引多行

import pandas as pd
data = [[1,2,3],[4,5,6]]
index = ['d','e']
columns=['a','b','c']
df = pd.DataFrame(data=data, index=index, columns=columns)
print df.iloc[0:]
'''
a b c
d 1 2 3
e 4 5 6
'''

2.4 iloc索引列数据

import pandas as pd
data = [[1,2,3],[4,5,6]]
index = ['d','e']
columns=['a','b','c']
df = pd.DataFrame(data=data, index=index, columns=columns)
print df.iloc[:,[1]]
'''
b
d 2
e 5
'''

3. ix——结合前两种的混合索引

3.1 通过行号索引

import pandas as pd
data = [[1,2,3],[4,5,6]]
index = ['d','e']
columns=['a','b','c']
df = pd.DataFrame(data=data, index=index, columns=columns)
print df.ix[1]
'''
a 4
b 5
c 6
'''

3.2 通过行标签索引

import pandas as pd
data = [[1,2,3],[4,5,6]]
index = ['d','e']
columns=['a','b','c']
df = pd.DataFrame(data=data, index=index, columns=columns)
print df.ix['e']
'''
a 4
b 5
c 6
'''

python库学习笔记——Pandas数据索引:ix、loc、iloc区别的更多相关文章

  1. python库学习笔记——分组计算利器:pandas中的groupby技术

    最近处理数据需要分组计算,又用到了groupby函数,温故而知新. 分组运算的第一阶段,pandas 对象(无论是 Series.DataFrame 还是其他的)中的数据会根据你所提供的一个或多个键被 ...

  2. python库学习笔记——爬虫常用的BeautifulSoup的介绍

    1. 开启Beautiful Soup 之旅 在这里先分享官方文档链接,不过内容是有些多,也不够条理,在此本文章做一下整理方便大家参考. 官方文档 2. 创建 Beautiful Soup 对象 首先 ...

  3. Neo4j学习笔记(2)——数据索引

    和关系数据库一样,Neo4j同样可以创建索引来加快查找速度. 在关系数据库中创建索引需要索引字段和指向记录的指针,通过索引可以快速查找到表中的行. 在Neo4j中,其索引是通过属性来创建,便于快速查找 ...

  4. python库学习笔记——BeautifulSoup处理子标签、后代标签、兄弟标签和父标签

    首先,我们来看一个简单的网页https://www.pythonscraping.com/pages/page3.html,打开后: 右键"检查"(谷歌浏览器)查看元素: 用导航树 ...

  5. python库学习笔记——re库:正则表达式入门(一)

    什么是正则表达式? 我们在处理文本文件的时候,会按照某种规则查找某些特定的字符串.比方我们希望从一堆电子档案中找到人员的电话号码整理成通讯录.于是,我们可以利用特定字符串的规律编程获得我们想要的信息. ...

  6. 【数据结构与算法Python版学习笔记】目录索引

    引言 算法分析 基本数据结构 概览 栈 stack 队列 Queue 双端队列 Deque 列表 List,链表实现 递归(Recursion) 定义及应用:分形树.谢尔宾斯基三角.汉诺塔.迷宫 优化 ...

  7. ArcGIS案例学习笔记_3_2_CAD数据导入建库

    ArcGIS案例学习笔记_3_2_CAD数据导入建库 计划时间:第3天下午 内容:CAD数据导入,建库和管理 目的:生成地块多边形,连接属性,管理 问题:CAD存在拓扑错误,标注位置偏移 教程:pdf ...

  8. 【原】Learning Spark (Python版) 学习笔记(三)----工作原理、调优与Spark SQL

    周末的任务是更新Learning Spark系列第三篇,以为自己写不完了,但为了改正拖延症,还是得完成给自己定的任务啊 = =.这三章主要讲Spark的运行过程(本地+集群),性能调优以及Spark ...

  9. 0003.5-20180422-自动化第四章-python基础学习笔记--脚本

    0003.5-20180422-自动化第四章-python基础学习笔记--脚本 1-shopping """ v = [ {"name": " ...

随机推荐

  1. docker 1-->docker compose 转载

    转自:http://www.ityouknow.com/docker/2018/03/22/docker-compose.html Docker-Compose 是 Docker 的一种编排服务,是一 ...

  2. ArrayList经典Demo

    import java.util.ArrayList; import java.util.Iterator; public class ArrayListDemo { public static vo ...

  3. Monkey进行测试时如何屏蔽掉状态栏和音量键

    我在学习的过程中使用简单的点击命令总是会触发到音量键和状态栏,由于我的测试机是虚拟按键所以也会触碰到 接下来说一下解决办法 全屏状态  adb shell settings put global po ...

  4. [USACO] 打井 Watering Hole

    题目描述 Farmer John has decided to bring water to his N (1 <= N <= 300) pastures which are conven ...

  5. html option选中 回显 取值

    1.html <select class="form-control" id="sex"> <option value="-1&qu ...

  6. BZOJ 1827 洛谷 2986 [USACO10MAR]伟大的奶牛聚集Great Cow Gather

    [题解] 很容易想到暴力做法,枚举每个点,然后对于每个点O(N)遍历整棵树计算答案.这样整个效率是O(N^2)的,显然不行. 我们考虑如果已知当前某个点的答案,如何快速计算它的儿子的答案. 显然选择它 ...

  7. 使用 XMLHttpRequest实现Ajax

    [XMLHttpRequest的概述] 1.XMLHttpRequest最早是在IE5中以ActiveX组件的形式实现的.非W3C标准 2.创建XMLHttpRequest对象(由于非标准所以实现方法 ...

  8. B树、B-树、B+树、B*树介绍,和B+树更适合做文件索引的原因

    今天看数据库,书中提到:由于索引是采用 B 树结构存储的,所以对应的索引项并不会被删除,经过一段时间的增删改操作后,数据库中就会出现大量的存储碎片, 这和磁盘碎片.内存碎片产生原理是类似的,这些存储碎 ...

  9. kendo grid Hierarchy

    Hierarchy grid中不能使用下面的这段代码,会造成传值传不过来,把下面的代码注释,不用models,直接用form表单传值就行,暂时没搞明白为什么 //parameterMap: funct ...

  10. codevs——1675 大质数 2

    1675 大质数 2  时间限制: 1 s  空间限制: 1000 KB  题目等级 : 钻石 Diamond 题解       题目描述 Description 小明因为没做作业而被数学老师罚站,之 ...