In the big cities, the subway systems always look so complex to the visitors. To give you some sense, the following figure shows the map of Beijing subway. Now you are supposed to help people with your computer skills! Given the starting position of your user, your task is to find the quickest way to his/her destination.

Input Specification:

Each input file contains one test case. For each case, the first line contains a positive integer N (≤ 100), the number of subway lines. Then N lines follow, with the i-th (i=1,⋯,N) line describes the i-th subway line in the format:

M S[1] S[2] ... S[M]

where M (≤ 100) is the number of stops, and S[i]'s (i=1,⋯,M) are the indices of the stations (the indices are 4-digit numbers from 0000 to 9999) along the line. It is guaranteed that the stations are given in the correct order -- that is, the train travels between S[i] and S[i+1] (i=1,⋯,M−1) without any stop.

Note: It is possible to have loops, but not self-loop (no train starts from S and stops at S without passing through another station). Each station interval belongs to a unique subway line. Although the lines may cross each other at some stations (so called "transfer stations"), no station can be the conjunction of more than 5 lines.

After the description of the subway, another positive integer K (≤ 10) is given. Then K lines follow, each gives a query from your user: the two indices as the starting station and the destination, respectively.

The following figure shows the sample map.

Note: It is guaranteed that all the stations are reachable, and all the queries consist of legal station numbers.

Output Specification:

For each query, first print in a line the minimum number of stops. Then you are supposed to show the optimal path in a friendly format as the following:

Take Line#X1 from S1 to S2.

Take Line#X2 from S2 to S3.

......

where Xi's are the line numbers and Si's are the station indices. Note: Besides the starting and ending stations, only the transfer stations shall be printed.

If the quickest path is not unique, output the one with the minimum number of transfers, which is guaranteed to be unique.

Sample Input:

4

7 1001 3212 1003 1204 1005 1306 7797

9 9988 2333 1204 2006 2005 2004 2003 2302 2001

13 3011 3812 3013 3001 1306 3003 2333 3066 3212 3008 2302 3010 3011

4 6666 8432 4011 1306

3

3011 3013

6666 2001

2004 3001

Sample Output:

2

Take Line#3 from 3011 to 3013.

10

Take Line#4 from 6666 to 1306.

Take Line#3 from 1306 to 2302.

Take Line#2 from 2302 to 2001.

6

Take Line#2 from 2004 to 1204.

Take Line#1 from 1204 to 1306.

Take Line#3 from 1306 to 3001.

分析

参考最短路径解析

#include<iostream> //偏难,使用dfs来找寻无权图的最短路径
#include<vector>
#include<unordered_map>
using namespace std;
int start, end1, mincnt=99999, mintransfer=99999;
unordered_map<int, int> line;
vector<vector<int>> graph(10000);
vector<int> visited(10000, 0), temppath, ans;
int transfercnt(vector<int> a){
int preline=0, cnt=0;
for(int i=1; i<a.size(); i++)
if(line[a[i-1]*10000+a[i]]!=preline){
cnt++;
preline=line[a[i-1]*10000+a[i]];
}
return cnt;
}
void dfs(int node, int cnt){
if(node==end1&&((cnt<mincnt)||((cnt==mincnt)&&(transfercnt(temppath))<mintransfer))){
ans=temppath;
mincnt=cnt;
mintransfer=transfercnt(temppath);
}
if(node==end1) return;
for(int i=0; i<graph[node].size(); i++){
if(visited[graph[node][i]]==0){
visited[graph[node][i]]=1;
temppath.push_back(graph[node][i]);
dfs(graph[node][i], cnt+1);
temppath.pop_back();
visited[graph[node][i]]=0;
}
}
}
int main(){
int n, temp;
cin>>n;
for(int i=1; i<=n; i++){
int sn, pre;
cin>>sn>>pre;
for(int j=1; j<sn; j++){
cin>>temp;
graph[temp].push_back(pre);
graph[pre].push_back(temp);
line[pre*10000+temp]=line[temp*10000+pre]=i;
pre=temp;
}
}
cin>>n;
for(int i=0; i<n; i++){
cin>>start>>end1;
mincnt=mintransfer=99999;
temppath.clear();
temppath.push_back(start);
visited[start]=1;
dfs(start, 0);
visited[start]=0;
cout<<mincnt<<endl;
int preline=0, pretransfer=start;
for(int j=1; j<ans.size(); j++){
if(line[ans[j-1]*10000+ans[j]]!=preline){
if(preline!=0)
printf("Take Line#%d from %04d to %04d.\n", preline, pretransfer, ans[j-1]);
preline = line[ans[j-1]*10000+ans[j]];
pretransfer = ans[j-1];
}
}
printf("Take Line#%d from %04d to %04d.\n", preline, pretransfer, end1);
}
return 0;
}

PAT 1131 Subway Map的更多相关文章

  1. PAT 1131. Subway Map (30)

    最短路. 记录一下到某个点,最后是哪辆车乘到的最短距离.换乘次数以及从哪个位置推过来的,可以开$map$记录一下. #include<map> #include<set> #i ...

  2. PAT甲级1131. Subway Map

    PAT甲级1131. Subway Map 题意: 在大城市,地铁系统对访客总是看起来很复杂.给你一些感觉,下图显示了北京地铁的地图.现在你应该帮助人们掌握你的电脑技能!鉴于您的用户的起始位置,您的任 ...

  3. PAT甲级——1131 Subway Map (30 分)

    可以转到我的CSDN查看同样的文章https://blog.csdn.net/weixin_44385565/article/details/89003683 1131 Subway Map (30  ...

  4. PAT甲级1131 Subway Map【dfs】【输出方案】

    题目:https://pintia.cn/problem-sets/994805342720868352/problems/994805347523346432 题意: 告诉你一个地铁线路图,站点都是 ...

  5. 1131 Subway Map DFS解法 BFS回溯!

    In the big cities, the subway systems always look so complex to the visitors. To give you some sense ...

  6. 1131 Subway Map(30 分)

    In the big cities, the subway systems always look so complex to the visitors. To give you some sense ...

  7. 1131 Subway Map

    题意:给出起点和终点,计算求出最短路径(最短路径即所经过的站点最少的),若最短路径不唯一,则选择其中换乘次数最少的一条线路. 思路:本题虽然也是求最短路径,但是此路径是不带权值的,路径长度即所经过的边 ...

  8. PAT A1131 Subway Map

    dfs,选择最优路径并输出~ 这道题难度非常炸裂,要求完完整整自己推一遍,DFS才算过关!思路:一遍dfs,过程中要维护两个变量,minCnt 中途停靠最少的站.minTransfer需要换成的最少次 ...

  9. PAT_A1131#Subway Map

    Source: PAT A1131 Subway Map (30 分) Description: In the big cities, the subway systems always look s ...

随机推荐

  1. 【158】◀▶ Linux-Bash学习

    鸟哥的 Linux 私房菜      Linux 的 26 个命令      Shell 脚本教程      Linux 命令大全 目录——按文件顺序: echo:显示变量内容 printf:格式化输 ...

  2. 移动端html touch事件

    诸如智能手机和平板电脑一类的移动设备通常会有一(capacitive touch-sensitivescreen),以捕捉用户的手指所做的交互.随着移动网络的发展,其能够支持越来越复杂的应用,web开 ...

  3. C#多线程,基础知识很重要

    本文通过介绍C#多线程的用法(基础玩法),附加介绍一下WinForm里边跨线程访问UI的方法 如图,就是这么一个简单的界面,每个按钮下面一个方法,分别设置文本框里边的内容,那么,开始吧! 先介绍一下W ...

  4. 洛谷 P1045 麦森数

    题目描述 形如2^{P}-1的素数称为麦森数,这时P一定也是个素数.但反过来不一定,即如果P是个素数,2^{P}-1不一定也是素数.到1998年底,人们已找到了37个麦森数.最大的一个是P=30213 ...

  5. 洛谷P3383 【模板】线性筛素数 (埃拉托斯特尼筛法)

    题目描述 如题,给定一个范围N,你需要处理M个某数字是否为质数的询问(每个数字均在范围1-N内) 输入输出格式 输入格式: 第一行包含两个正整数N.M,分别表示查询的范围和查询的个数. 接下来M行每行 ...

  6. Python之双色球选购和三级菜单问题

    1:双色球选购# 1 双色球(假设一共八个球,6个红球,球号1-32.2个蓝球,球号1-16)# 2 确保用户不能重复选择,不能超出范围# 3 用户输入有误时有相应的错误提示# 4 最后展示用户选择的 ...

  7. javascript异步下载 Promise实现

    一般下载都是直接打开一个链接就行.var URL = 'XXXX';window.open(URL)其实这样会有些问题:1. 浏览器禁止打开新窗口,导致无法下载 那么怎么解决呢?这样: <a h ...

  8. UNICODE本地编译freescale的i.MX6Q的android4.2.2&android4.4.2 && 全志a80的步骤x1

    20151031本地编译freescale的i.MX6Q的android4.2.2&android4.4.2 && 全志a80的步骤x1 2015/10/31 15:07 开始 ...

  9. IDEA提示 found duplicate code

    原因: IntelliJ IDEA提示Found duplicated code in this file 这不是我们代码错误,而是idea提示说我们的代码有重复,在项目的其他地方有同样的代码片段 解 ...

  10. 关于ds添加datarow

    有一个dataset DS.如果我想将DS中的某一行复制,得到新的一行,添加到DS中. 可能就会想到:DS.Tables[0].Rows.Add(DS.Tables[0].Rows[i])但是这样程序 ...