[luoguP2158] [SDOI2008]仪仗队(数论)
可以看出 (i, j) 能被看到,(i * k, j * k) 都会被挡住
暴力
所以 gcd(i, j) == 1 的话 ans ++
那么可以枚举一半(中轴对称),求解答案,只能拿30分
#include <cstdio>
#include <iostream> int n, ans; inline int read()
{
int x = 0, f = 1;
char ch = getchar();
for(; !isdigit(ch); ch = getchar()) if(ch == '-') f = -1;
for(; isdigit(ch); ch = getchar()) x = (x << 1) + (x << 3) + ch - '0';
return x * f;
} inline int gcd(int x, int y)
{
return !y ? x : gcd(y, x % y);
} int main()
{
int i, j;
n = read();
if(n == 1)
{
puts("0");
return 0;
}
for(i = 1; i < n; i++)
for(j = i + 1; j < n; j++)
if(gcd(i, j) == 1)
ans++;
printf("%d\n", ans * 2 + 3);
return 0;
}
正解
可以看出,gcd(i,j) == 1 才能对答案有贡献,也就是互质,想到什么?phi 值
其实上面的暴力过程仔细来看也就是 phi 值 的求解
#include <cstdio>
#include <iostream> int n, ans;
int phi[500001]; inline int read()
{
int x = 0, f = 1;
char ch = getchar();
for(; !isdigit(ch); ch = getchar()) if(ch == '-') f = -1;
for(; isdigit(ch); ch = getchar()) x = (x << 1) + (x << 3) + ch - '0';
return x * f;
} inline void euler_phi()
{
int i, j;
phi[1] = 1;
for(i = 2; i < n; i++)
if(!phi[i])
for(j = i; j < n; j += i)
{
if(!phi[j]) phi[j] = j;
phi[j] = phi[j] / i * (i - 1);
}
} int main()
{
int i, j;
n = read();
if(n == 1)
{
puts("0");
return 0;
}
euler_phi();
for(i = 1; i < n; i++) ans += phi[i];
printf("%d\n", ans * 2 + 1);
return 0;
}
[luoguP2158] [SDOI2008]仪仗队(数论)的更多相关文章
- [LuoguP2158][SDOI2008]仪仗队
[LuoguP2158][SDOI2008]仪仗队(Link) 现在你有一个\(N \times N\)的矩阵,求你站在\((1,1)\)点能看到的点的总数. 很简洁的题面. 这道题看起来很难,但是稍 ...
- 【bzoj2190】: [SDOI2008]仪仗队 数论-欧拉函数
[bzoj2190]: [SDOI2008]仪仗队 在第i行当且仅当gcd(i,j)=1 可以被看到 欧拉函数求和 没了 /* http://www.cnblogs.com/karl07/ */ #i ...
- 【bzoj2190】[SDOI2008]仪仗队 数论 欧拉函数 筛法
http://www.lydsy.com/JudgeOnline/problem.php?id=2190 裸欧拉函数,先不计算对角线(a,a)的一列,然后算出1到n-1的所有欧拉函数相加*2,再加 ...
- BZOJ-2190 仪仗队 数论+欧拉函数(线性筛)
今天zky学长讲数论,上午水,舒爽的不行..后来下午直接while(true){懵逼:}死循全程懵逼....(可怕)Thinking Bear. 2190: [SDOI2008]仪仗队 Time Li ...
- BZOJ 2190: [SDOI2008]仪仗队( 欧拉函数 )
假设C君为(0, 0), 则右上方为(n - 1, n - 1). 一个点(x, y) 能被看到的前提是gcd(x, y) = 1, 所以 answer = ∑ phi(i) * 2 + 2 - 1 ...
- BZOJ 2190: [SDOI2008]仪仗队
2190: [SDOI2008]仪仗队 Time Limit: 10 Sec Memory Limit: 259 MBSubmit: 2689 Solved: 1713[Submit][Statu ...
- [SDOI2008]仪仗队
P2158 [SDOI2008]仪仗队 题目描述 作为体育委员,C君负责这次运动会仪仗队的训练.仪仗队是由学生组成的N * N的方阵,为了保证队伍在行进中整齐划一,C君会跟在仪仗队的左后方,根据其视线 ...
- P2158 [SDOI2008]仪仗队
P2158 [SDOI2008]仪仗队图是关于y=x对称的,横纵坐标一定是互质的否则在之前就被扫过了,所以就可以用欧拉函数再*2就完了. #include<iostream> #inclu ...
- 洛谷 P2158 [SDOI2008]仪仗队 解题报告
P2158 [SDOI2008]仪仗队 题目描述 作为体育委员,C君负责这次运动会仪仗队的训练.仪仗队是由学生组成的N * N的方阵,为了保证队伍在行进中整齐划一,C君会跟在仪仗队的左后方,根据其视线 ...
随机推荐
- Net 发布网站中遇到的几点问题
1.windows 身份验证设置 打开IIS==>=>找到网站==> 身份验证==>打开功能==>启用windows身份验证 网站设置: 博客参考: http://blo ...
- Office Excel的几个快捷键记录
Office Excel的几个快捷键记录: 切换Sheet:CTRL + PageUP/PageDown 另存为:F12
- MyElipse如何添加Emmet插件
把这个jar文件放到myeclipse2014安装目录下dropins文件夹中,然后重启myeclipse即可. 可到window-->perferences里查看,如果成功则会看到emmet选 ...
- jQuery四叶草菜单效果,跟360杀毒软件差不多
首先,我们要在js,css文件夹中创建js跟css,然后在body中写入html代码 <main><!--标签是 HTML 5 中的新标签. 素中的内容对于文档来说应当是唯一的.它不 ...
- Farseer.net轻量级开源框架 入门篇:Where条件的终极使用
导航 目 录:Farseer.net轻量级开源框架 目录 上一篇:Farseer.net轻量级开源框架 入门篇: 查询数据详解 下一篇:Farseer.net轻量级开源框架 中级篇: 事务的使用 ...
- Farseer.net轻量级开源框架 中级篇:数据绑定
导航 目 录:Farseer.net轻量级开源框架 目录 上一篇:Farseer.net轻量级开源框架 中级篇: DbFactory数据工厂 下一篇:Farseer.net轻量级开源框架 中级篇: ...
- [Windows Server 2012] MySQL更改数据库引擎(MyISAM改为INNODB)
★ 欢迎来到[护卫神·V课堂],网站地址:http://v.huweishen.com ★ 护卫神·V课堂 是护卫神旗下专业提供服务器教学视频的网站,每周更新视频. ★ 本节我们将带领大家:更改MyS ...
- 关于联想笔记本不能连接无线网(wifi),注销后重新登录才可以连接
解决联想笔记本wifi问题(果果) 最近很多使用联想的朋友都遇到了这样一个问题,那就是笔记本的wifi突然不能用了,好吧,其实我个人也遇到了这个问题,但是网上貌似对这个问题并没有给出一个可以解决的办法 ...
- PHPStorm+XDebug进行调试
笔者的开发环境如下: Windows8.1+Apache+PhpStorm+XDebug+Firefox(XDebug helper 1.4.3插件). 一.XDebug安装配置 (1)下载XDebu ...
- 梦想CAD控件COM接口自定义命令
在CAD软件操作中,为方便使用者,使用自定义命令发出命令,完成CAD绘图,修改,保存等操作.点击此处下载演示实例. _DMxDrawX::RegistUserCustomCommand 向CAD控件注 ...