BZOJ 4006 Luogu P3264 [JLOI2015]管道连接 (斯坦纳树、状压DP)
题目链接: (bzoj)https://www.lydsy.com/JudgeOnline/problem.php?id=4006
(luogu)https://www.luogu.org/problemnew/show/P3264
题解: 终于写出来斯坦纳树了。。
我一直不明白的地方是: spfa那种转移为什么是直接加边权?为什么没有一些特殊情况(如从根转移到儿子)不是加边权?后来觉得大概是因为那种特殊情况如果出现,则一定会在枚举子集的转移中被转移到。
做法就是,先对每个特殊点的子集求出来最小斯坦纳树,然后设\(dp[S]\)表示颜色集合\(S\)内的最小答案,那么\(dp[S]\)可以直接等于它所对应的关键点集合的斯坦纳树,也可以由好几个子集合并过来,枚举子集转移即可。
时间复杂度\(O(ShortestPath(n,m)\times 2^p+n3^p)\)
这里貌似SPFA比Dijkstra略快一些。(我在洛谷上开O2,spfa 3234ms, Dijkstra 6695ms, 不开O2 spfa T成65, Dijkstra T成40)
代码
SPFA
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#include<queue>
using namespace std;
const int N = 1e3;
const int M = 3e3;
const int NN = 10;
const int INF = 707406378;
struct Edge
{
int v,w,nxt;
} e[(M<<1)+3];
int fe[N+3];
int ky[NN+3];
int clrset[(1<<NN)+3];
int clr[NN+3];
int dp[N+3][(1<<NN)+3];
int ans[(1<<NN)+3];
bool inq[M+3];
int que[M+3];
int n,m,nn,en;
void addedge(int u,int v,int w)
{
en++; e[en].v = v; e[en].w = w;
e[en].nxt = fe[u]; fe[u] = en;
}
void update(int &x,int y) {x = x<y?x:y;}
void SPFA(int sta)
{
int head = 1,tail = 1;
for(int i=1; i<=n; i++)
{
if(dp[i][sta]<INF)
{
que[tail] = i; tail++; if(tail>n+1) tail = 1;
inq[i] = true;
}
}
while(head!=tail)
{
int u = que[head]; head++; if(head>n+1) head = 1;
for(int i=fe[u]; i; i=e[i].nxt)
{
int v = e[i].v;
if(dp[u][sta]+e[i].w<dp[v][sta])
{
dp[v][sta] = dp[u][sta]+e[i].w;
if(!inq[v])
{
que[tail] = v; tail++; if(tail>n+1) tail = 1;
inq[v] = true;
}
}
}
inq[u] = false;
}
}
int main()
{
scanf("%d%d%d",&n,&m,&nn);
for(int i=1; i<=m; i++)
{
int x,y,z; scanf("%d%d%d",&x,&y,&z);
addedge(x,y,z); addedge(y,x,z);
}
for(int i=0; i<nn; i++)
{
scanf("%d%d",&clr[i],&ky[i]); clr[i]--;
clrset[1<<clr[i]] |= (1<<i);
}
memset(dp,42,sizeof(dp));
for(int i=0; i<nn; i++) dp[ky[i]][(1<<i)] = 0;
for(int i=1; i<(1<<nn); i++)
{
for(int j=(i-1)&i; j; j=(j-1)&i)
{
for(int k=1; k<=n; k++)
{
dp[k][i] = min(dp[k][i],dp[k][i^j]+dp[k][j]);
}
}
SPFA(i);
}
for(int i=1; i<(1<<nn); i<<=1)
{
for(int j=0; j<(1<<nn); j++)
{
if(j&i)
{
clrset[j] |= clrset[i];
}
}
}
for(int i=1; i<(1<<nn); i++)
{
ans[i] = INF;
for(int j=1; j<=n; j++)
{
update(ans[i],dp[j][clrset[i]]);
}
for(int j=(i-1)&i; j; j=(j-1)&i)
{
update(ans[i],ans[j]+ans[i^j]);
}
}
printf("%d\n",ans[(1<<nn)-1]);
return 0;
}
Dijkstra
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#include<queue>
using namespace std;
const int N = 1e3;
const int M = 3e3;
const int NN = 10;
const int INF = 707406378;
struct Edge
{
int v,w,nxt;
} e[(M<<1)+3];
struct DijNode
{
int u,dis;
DijNode() {}
DijNode(int _u,int _dis) {u = _u,dis = _dis;}
bool operator <(const DijNode &arg) const {return dis>arg.dis;}
};
int fe[N+3];
bool vis[N+3];
int ky[NN+3];
int clrset[(1<<NN)+3];
int clr[NN+3];
int dp[N+3][(1<<NN)+3];
int ans[(1<<NN)+3];
priority_queue<DijNode> que;
int n,m,nn,en;
void addedge(int u,int v,int w)
{
en++; e[en].v = v; e[en].w = w;
e[en].nxt = fe[u]; fe[u] = en;
}
void update(int &x,int y) {x = min(x,y);}
void Dijkstra(int sta)
{
while(!que.empty())
{
DijNode tmp = que.top(); que.pop(); int u = tmp.u;
if(tmp.dis!=dp[u][sta]) continue;
vis[u] = true;
for(int i=fe[u]; i; i=e[i].nxt)
{
int v = e[i].v;
if(vis[v]==false && dp[u][sta]+e[i].w<dp[v][sta])
{
dp[v][sta] = dp[u][sta]+e[i].w;
que.push(DijNode(v,dp[v][sta]));
}
}
}
for(int i=1; i<=n; i++) vis[i] = false;
}
int main()
{
scanf("%d%d%d",&n,&m,&nn);
for(int i=1; i<=m; i++)
{
int x,y,z; scanf("%d%d%d",&x,&y,&z);
addedge(x,y,z); addedge(y,x,z);
}
for(int i=0; i<nn; i++)
{
scanf("%d%d",&clr[i],&ky[i]); clr[i]--;
clrset[1<<clr[i]] |= (1<<i);
}
memset(dp,42,sizeof(dp));
for(int i=0; i<nn; i++) dp[ky[i]][(1<<i)] = 0;
for(int i=1; i<(1<<nn); i++)
{
for(int j=(i-1)&i; j; j=(j-1)&i)
{
for(int k=1; k<=n; k++)
{
dp[k][i] = min(dp[k][i],dp[k][i^j]+dp[k][j]);
}
}
for(int j=1; j<=n; j++)
{
if(dp[j][i]!=INF)
{
que.push(DijNode(j,dp[j][i]));
}
}
Dijkstra(i);
}
for(int i=1; i<(1<<nn); i<<=1)
{
for(int j=0; j<(1<<nn); j++)
{
if(j&i)
{
clrset[j] |= clrset[i];
}
}
}
for(int i=1; i<(1<<nn); i++)
{
ans[i] = INF;
for(int j=1; j<=n; j++)
{
update(ans[i],dp[j][clrset[i]]);
}
for(int j=(i-1)&i; j; j=(j-1)&i)
{
update(ans[i],ans[j]+ans[i^j]);
}
}
printf("%d\n",ans[(1<<nn)-1]);
return 0;
}
BZOJ 4006 Luogu P3264 [JLOI2015]管道连接 (斯坦纳树、状压DP)的更多相关文章
- 【bzoj4006】[JLOI2015]管道连接 斯坦纳树+状压dp
题目描述 给出一张 $n$ 个点 $m$ 条边的无向图和 $p$ 个特殊点,每个特殊点有一个颜色.要求选出若干条边,使得颜色相同的特殊点在同一个连通块内.输出最小边权和. 输入 第一行包含三个整数 n ...
- BZOJ4006: [JLOI2015]管道连接(斯坦纳树,状压DP)
Time Limit: 30 Sec Memory Limit: 128 MBSubmit: 1171 Solved: 639[Submit][Status][Discuss] Descripti ...
- bzoj 4006 管道连接 —— 斯坦纳树+状压DP
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4006 用斯坦纳树求出所有关键点的各种连通情况的代价,把这个作为状压(压的是集合选择情况)的初 ...
- 【BZOJ4774/4006】修路/[JLOI2015]管道连接 斯坦纳树
[BZOJ4774]修路 Description 村子间的小路年久失修,为了保障村子之间的往来,法珞决定带领大家修路.对于边带权的无向图 G = (V, E),请选择一些边,使得1 <= i & ...
- 洛谷P3264 [JLOI2015]管道连接 (斯坦纳树)
题目链接 题目大意:有一张无向图,每条边有一定的花费,给出一些点集,让你从中选出一些边,用最小的花费将每个点集内的点相互连通,可以使用点集之外的点(如果需要的话). 算是斯坦纳树的入门题吧. 什么是斯 ...
- bzoj 4006 [JLOI2015]管道连接(斯坦纳树+状压DP)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=4006 [题意] 给定n点m边的图,连接边(u,v)需要花费w,问满足使k个点中同颜色的 ...
- BZOJ4006 JLOI2015 管道连接(斯坦纳树生成森林)
4006: [JLOI2015]管道连接 Time Limit: 30 Sec Memory Limit: 128 MB Description 小铭铭最近进入了某情报部门,该部门正在被如何建立安全的 ...
- BZOJ2595: [Wc2008]游览计划(斯坦纳树,状压DP)
Time Limit: 10 Sec Memory Limit: 256 MBSec Special JudgeSubmit: 2030 Solved: 986[Submit][Status][ ...
- 绿色计算大赛决赛 第二阶段 消息传递(斯坦纳树 状压dp+spfa)
传送门 Description 作为公司老板的你手下有N个员工,其中有M个特殊员工.现在,你有一个消息需要传递给你的特殊员工.因为你的公司业务非常紧张,所以你和员工之间以及员工之间传递消息会造成损失. ...
随机推荐
- angularJs模版注入的两种方式
一,声名式注入 1:app.js: var myApp = angular.module("myApp",["ngRoute"]); 2:controller. ...
- J20170527-ts
足場 立脚点.脚手架 scaffold ハイパーリンク 超链接 hyperlink アンカータグ 锚标签 でしゃばり 多嘴.多事.多管闲事的人,好出风头的人 でしゃばる 多管闲事 節介 ...
- 栗染-github中搭建博客遇到的问题之一
运行命令:git push -u origin master To https://github.com/xuzhezhaozhao/Practice.git ! [rejected] master ...
- poj 1286 Necklace of Beads【polya定理+burnside引理】
和poj 2409差不多,就是k变成3了,详见 还有不一样的地方是记得特判n==0的情况不然会RE #include<iostream> #include<cstdio> us ...
- bzoj 1592: [Usaco2008 Feb]Making the Grade 路面修整【dp】
因为是单调不降或单调不升,所以所有的bi如果都是ai中出现过的一定不会变差 以递增为例,设f[i][j]为第j段选第i大的高度,预处理出s[i][j]表示选第i大的时,前j个 a与第i大的值的差的绝对 ...
- 源码阅读之ArrayList(JDK8)
ArrayList概述 ArrayList是一个的可变数组的实现,实现了所有可选列表操作,并允许包括 null 在内的所有元素.每个ArrayList实例都有一个容量,该容量是指用来存储列表元素的数组 ...
- 【原创】Maven安装和配置
ι 版权声明:本文为博主原创文章,未经博主允许不得转载. 前提 利用maven进行java项目或J2EE项目开发,要求电脑已配置java开发环境(JDK) 下载 下载地址:http://maven.a ...
- mycat查表报错Invalid DataSource:0解决方法
报错时机 登录没问题 use库没问题 select任意一张表均报错 报错信息 mysql> select * from mydb.tb_user; ERROR 3009 (HY000): jav ...
- JS 实现PDF文件打印
function PdfPrint() { bdhtml = window.document.body.innerHTML; sprnstr = "<!-- ...
- python tkinter窗口置顶
下面两句即可实现root窗口的置顶显示,可以用于某些程序的消息提示,能够弹出到桌面显示 root = Tk()root.wm_attributes('-topmost',1)