IDA 宏定义
/*
This file contains definitions used by the Hex-Rays decompiler output.
It has type definitions and convenience macros to make the
output more readable.
Copyright (c) 2007-2011 Hex-Rays
*/
#if defined(__GNUC__)
typedef long long ll;
typedef unsigned long long ull;
#define __int64 long long
#define __int32 int
#define __int16 short
#define __int8 char
#define MAKELL(num) num ## LL
#define FMT_64 "ll"
#elif defined(_MSC_VER)
typedef __int64 ll;
typedef unsigned __int64 ull;
#define MAKELL(num) num ## i64
#define FMT_64 "I64"
#elif defined (__BORLANDC__)
typedef __int64 ll;
typedef unsigned __int64 ull;
#define MAKELL(num) num ## i64
#define FMT_64 "L"
#else
#error "unknown compiler"
#endif
typedef unsigned int uint;
typedef unsigned char uchar;
typedef unsigned short ushort;
typedef unsigned long ulong; typedef char int8;
typedef signed char sint8;
typedef unsigned char uint8;
typedef short int16;
typedef signed short sint16;
typedef unsigned short uint16;
typedef int int32;
typedef signed int sint32;
typedef unsigned int uint32;
typedef ll int64;
typedef ll sint64;
typedef ull uint64; // Partially defined types:
#define _BYTE uint8
#define _WORD uint16
#define _DWORD uint32
#define _QWORD uint64
#if !defined(_MSC_VER)
#define _LONGLONG __int128
#endif #ifndef _WINDOWS_
typedef int8 BYTE;
typedef int16 WORD;
typedef int32 DWORD;
typedef int32 LONG;
#endif
typedef int64 QWORD;
#ifndef __cplusplus
typedef int bool; // we want to use bool in our C programs
#endif // Some convenience macros to make partial accesses nicer
// first unsigned macros:
#define LOBYTE(x) (*((_BYTE*)&(x))) // low byte
#define LOWORD(x) (*((_WORD*)&(x))) // low word
#define LODWORD(x) (*((_DWORD*)&(x))) // low dword
#define HIBYTE(x) (*((_BYTE*)&(x)+1))
#define HIWORD(x) (*((_WORD*)&(x)+1))
#define HIDWORD(x) (*((_DWORD*)&(x)+1))
#define BYTEn(x, n) (*((_BYTE*)&(x)+n))
#define WORDn(x, n) (*((_WORD*)&(x)+n))
#define BYTE1(x) BYTEn(x, 1) // byte 1 (counting from 0)
#define BYTE2(x) BYTEn(x, 2)
#define BYTE3(x) BYTEn(x, 3)
#define BYTE4(x) BYTEn(x, 4)
#define BYTE5(x) BYTEn(x, 5)
#define BYTE6(x) BYTEn(x, 6)
#define BYTE7(x) BYTEn(x, 7)
#define BYTE8(x) BYTEn(x, 8)
#define BYTE9(x) BYTEn(x, 9)
#define BYTE10(x) BYTEn(x, 10)
#define BYTE11(x) BYTEn(x, 11)
#define BYTE12(x) BYTEn(x, 12)
#define BYTE13(x) BYTEn(x, 13)
#define BYTE14(x) BYTEn(x, 14)
#define BYTE15(x) BYTEn(x, 15)
#define WORD1(x) WORDn(x, 1)
#define WORD2(x) WORDn(x, 2) // third word of the object, unsigned
#define WORD3(x) WORDn(x, 3)
#define WORD4(x) WORDn(x, 4)
#define WORD5(x) WORDn(x, 5)
#define WORD6(x) WORDn(x, 6)
#define WORD7(x) WORDn(x, 7) // now signed macros (the same but with sign extension)
#define SLOBYTE(x) (*((int8*)&(x)))
#define SLOWORD(x) (*((int16*)&(x)))
#define SLODWORD(x) (*((int32*)&(x)))
#define SHIBYTE(x) (*((int8*)&(x)+1))
#define SHIWORD(x) (*((int16*)&(x)+1))
#define SHIDWORD(x) (*((int32*)&(x)+1))
#define SBYTEn(x, n) (*((int8*)&(x)+n))
#define SWORDn(x, n) (*((int16*)&(x)+n))
#define SBYTE1(x) SBYTEn(x, 1)
#define SBYTE2(x) SBYTEn(x, 2)
#define SBYTE3(x) SBYTEn(x, 3)
#define SBYTE4(x) SBYTEn(x, 4)
#define SBYTE5(x) SBYTEn(x, 5)
#define SBYTE6(x) SBYTEn(x, 6)
#define SBYTE7(x) SBYTEn(x, 7)
#define SBYTE8(x) SBYTEn(x, 8)
#define SBYTE9(x) SBYTEn(x, 9)
#define SBYTE10(x) SBYTEn(x, 10)
#define SBYTE11(x) SBYTEn(x, 11)
#define SBYTE12(x) SBYTEn(x, 12)
#define SBYTE13(x) SBYTEn(x, 13)
#define SBYTE14(x) SBYTEn(x, 14)
#define SBYTE15(x) SBYTEn(x, 15)
#define SWORD1(x) SWORDn(x, 1)
#define SWORD2(x) SWORDn(x, 2)
#define SWORD3(x) SWORDn(x, 3)
#define SWORD4(x) SWORDn(x, 4)
#define SWORD5(x) SWORDn(x, 5)
#define SWORD6(x) SWORDn(x, 6)
#define SWORD7(x) SWORDn(x, 7) // Helper functions to represent some assembly instructions. #ifdef __cplusplus // Fill memory block with an integer value
inline void memset32(void *ptr, uint32 value, int count)
{
uint32 *p = (uint32 *)ptr;
for ( int i=0; i < count; i++ )
*p++ = value;
} // Generate a reference to pair of operands
template<class T> int16 __PAIR__( int8 high, T low) { return ((( int16)high) << sizeof(high)*8) | uint8(low); }
template<class T> int32 __PAIR__( int16 high, T low) { return ((( int32)high) << sizeof(high)*8) | uint16(low); }
template<class T> int64 __PAIR__( int32 high, T low) { return ((( int64)high) << sizeof(high)*8) | uint32(low); }
template<class T> uint16 __PAIR__(uint8 high, T low) { return (((uint16)high) << sizeof(high)*8) | uint8(low); }
template<class T> uint32 __PAIR__(uint16 high, T low) { return (((uint32)high) << sizeof(high)*8) | uint16(low); }
template<class T> uint64 __PAIR__(uint32 high, T low) { return (((uint64)high) << sizeof(high)*8) | uint32(low); } // rotate left
template<class T> T __ROL__(T value, uint count)
{
const uint nbits = sizeof(T) * 8;
count %= nbits; T high = value >> (nbits - count);
value <<= count;
value |= high;
return value;
} // rotate right
template<class T> T __ROR__(T value, uint count)
{
const uint nbits = sizeof(T) * 8;
count %= nbits; T low = value << (nbits - count);
value >>= count;
value |= low;
return value;
} // carry flag of left shift
template<class T> int8 __MKCSHL__(T value, uint count)
{
const uint nbits = sizeof(T) * 8;
count %= nbits; return (value >> (nbits-count)) & 1;
} // carry flag of right shift
template<class T> int8 __MKCSHR__(T value, uint count)
{
return (value >> (count-1)) & 1;
} // sign flag
template<class T> int8 __SETS__(T x)
{
if ( sizeof(T) == 1 )
return int8(x) < 0;
if ( sizeof(T) == 2 )
return int16(x) < 0;
if ( sizeof(T) == 4 )
return int32(x) < 0;
return int64(x) < 0;
} // overflow flag of subtraction (x-y)
template<class T, class U> int8 __OFSUB__(T x, U y)
{
if ( sizeof(T) < sizeof(U) )
{
U x2 = x;
int8 sx = __SETS__(x2);
return (sx ^ __SETS__(y)) & (sx ^ __SETS__(x2-y));
}
else
{
T y2 = y;
int8 sx = __SETS__(x);
return (sx ^ __SETS__(y2)) & (sx ^ __SETS__(x-y2));
}
} // overflow flag of addition (x+y)
template<class T, class U> int8 __OFADD__(T x, U y)
{
if ( sizeof(T) < sizeof(U) )
{
U x2 = x;
int8 sx = __SETS__(x2);
return ((1 ^ sx) ^ __SETS__(y)) & (sx ^ __SETS__(x2+y));
}
else
{
T y2 = y;
int8 sx = __SETS__(x);
return ((1 ^ sx) ^ __SETS__(y2)) & (sx ^ __SETS__(x+y2));
}
} // carry flag of subtraction (x-y)
template<class T, class U> int8 __CFSUB__(T x, U y)
{
int size = sizeof(T) > sizeof(U) ? sizeof(T) : sizeof(U);
if ( size == 1 )
return uint8(x) < uint8(y);
if ( size == 2 )
return uint16(x) < uint16(y);
if ( size == 4 )
return uint32(x) < uint32(y);
return uint64(x) < uint64(y);
} // carry flag of addition (x+y)
template<class T, class U> int8 __CFADD__(T x, U y)
{
int size = sizeof(T) > sizeof(U) ? sizeof(T) : sizeof(U);
if ( size == 1 )
return uint8(x) > uint8(x+y);
if ( size == 2 )
return uint16(x) > uint16(x+y);
if ( size == 4 )
return uint32(x) > uint32(x+y);
return uint64(x) > uint64(x+y);
} #else
// The following definition is not quite correct because it always returns
// uint64. The above C++ functions are good, though.
#define __PAIR__(high, low) (((uint64)(high)<<sizeof(high)*8) | low)
// For C, we just provide macros, they are not quite correct.
#define __ROL__(x, y) __rotl__(x, y) // Rotate left
#define __ROR__(x, y) __rotr__(x, y) // Rotate right
#define __CFSHL__(x, y) invalid_operation // Generate carry flag for (x<<y)
#define __CFSHR__(x, y) invalid_operation // Generate carry flag for (x>>y)
#define __CFADD__(x, y) invalid_operation // Generate carry flag for (x+y)
#define __CFSUB__(x, y) invalid_operation // Generate carry flag for (x-y)
#define __OFADD__(x, y) invalid_operation // Generate overflow flag for (x+y)
#define __OFSUB__(x, y) invalid_operation // Generate overflow flag for (x-y)
#endif // No definition for rcl/rcr because the carry flag is unknown
#define __RCL__(x, y) invalid_operation // Rotate left thru carry
#define __RCR__(x, y) invalid_operation // Rotate right thru carry
#define __MKCRCL__(x, y) invalid_operation // Generate carry flag for a RCL
#define __MKCRCR__(x, y) invalid_operation // Generate carry flag for a RCR
#define __SETP__(x, y) invalid_operation // Generate parity flag for (x-y) // In the decompilation listing there are some objects declarared as _UNKNOWN
// because we could not determine their types. Since the C compiler does not
// accept void item declarations, we replace them by anything of our choice,
// for example a char: #define _UNKNOWN char #ifdef _MSC_VER
#define snprintf _snprintf
#define vsnprintf _vsnprintf
#endif
IDA 宏定义的更多相关文章
- c++宏定义命令
在程序开始以#开头的命令,他们是预编译命令.有三类预编译命令:宏定义命令.文件包含命令.条件编译命令:今天聊聊宏定义: 宏定义命令将一个标识符定义为一个字符串,源程序中的该标识符均以指定的字符串来代替 ...
- dll导入导出宏定义,出现“不允许 dllimport 函数 的定义”的问题分析
建立dll项目后,在头文件中,定义API宏 #ifndef API_S_H #define API_S_H ...... #ifndef DLL_S_20160424 #define API _dec ...
- iOS之常用宏定义
下面我为大家提供一些常用的宏定义! 将这些宏定义 加入到.pch使用 再也不用 用一次写一次这么长的程序了 //-------------------获取设备大小------------------- ...
- linux中offsetof与container_of宏定义
linux内核中offsetof与container_of的宏定义 #define offsetof(TYPE, MEMBER) ((size_t) &((TYPE *)0)->M ...
- Linux Kernel代码艺术——系统调用宏定义
我们习惯在SI(Source Insight)中阅读Linux内核,SI会建立符号表数据库,能非常方便地跳转到变量.宏.函数等的定义处.但在处理系统调用的函数时,却会遇到一些麻烦:我们知道系统调用函数 ...
- 面试问题5:const 与 define 宏定义之间的区别
问题描述:const 与 define 宏定义之间的区别 (1) 编译器处理方式不同 define宏是在预处理阶段展开: const常量是编译运行阶段使用: (2) 类型和安全检查不同 ...
- 关于Xcode8.1 / iOS10+ 真机测试系统打印或者宏定义打印不显示问题
前言: 最近做项目时遇到了很多莫名其妙的问题,其中就有这个打印(NSLog).也不多废话了,我们先来回顾一下Xcode8发布以来,我们遇到的一些关于打印的问题,当然也有解决方法: 1.Xcode8打印 ...
- JDStatusBarNotification和一些宏定义
// // AddTopicViewController.m // vMeet2 // // Created by 张源海 on 16/6/30. // Copyright © 2016年 h ...
- #define宏定义形式的"函数"导致的bug
定义了一个宏定义形式的"函数": #define SUM8(YY)\ {\ int Y = YY>>2;\ ...\ } 然后使用的时候,传入了一个同名的变量Y: i ...
随机推荐
- bzoj4890[Tjoi2017]城市(树的半径)
4890: [Tjoi2017]城市 Time Limit: 30 Sec Memory Limit: 128 MBSubmit: 149 Solved: 91[Submit][Status][D ...
- [LOJ#10064]黑暗城堡
Description 在顺利攻破 Lord lsp 的防线之后,lqr 一行人来到了 Lord lsp 的城堡下方.Lord lsp 黑化之后虽然拥有了强大的超能力,能够用意念力制造建筑物,但是智商 ...
- .net 反射初体验
一.获取对象中的所有属性 Type是.net定义的一个反射的类.通过反射获取到对象的所有属性,然后根据属性获取对象对应属性所对应的值. 使用PropertyInfo,请引用命名空间using Syst ...
- NodeJs学习记录(五)初学阶段关于ejs和路由
1.因为只是用了一点皮毛,所以使用起来感觉基本和jsp无异, 逻辑代码块使用 <% if() {} else %> , 输出参数值使用 <%=title %>, 有一个 ...
- MYSQL 使用事务
直接上代码,ID是唯一标识 CREATE PROCEDURE PRO2() BEGIN DECLARE t_error INTEGER; DECLARE CONTINUE HANDLER FOR SQ ...
- phpcms标签第三弹
{CHARSET} -------------------------------------字符集 (gbk或者utf-8) {if isset($SEO['title']) && ...
- mongodb数据库命令
常用数据库命令汇总 Database Commands Api 下面简单列一下Shell常用的基本命令 启动连接Mongodb #带配置信息启动 mongod -f xxx.conf #连接 mong ...
- HDU_2544_最短路
题意:第一个路口是起点,第n个(最后一个)路口是终点,问最短路径. 总结:第一个dijkstra. 代码: #include<iostream> #include<cstdio> ...
- Swift mutating Equatable Hashable 待研究
Swift mutating Equatable Hashable 待研究
- 外观模式(Facade)-子系统的协作与整合-接口模式
对子系统进行整合,对外提供更强大或更便捷的接口. 在一个模块和几个子系统进行通信时考虑. 什么是外观模式? 外观模式(Facade),为子系统中的一组接口提供一个一致的界面,定义一个高层接口,这个接口 ...