题目大意

\(T\)(\(T\leq100\))组询问

有\(1\)到\(n\)(\(n\leq50000\))这\(n\)个整数组成的一个排列

定义这个排列的一个子区间是“连续”的,当且仅当这个子区间在位置上和在值域上都是连续的

分别给出这个排列以每个位置\(i\)为右端点的最长“连续”子区间的长度\(l_i\),问有多少个排列满足这个条件

题解

发现这些最长“连续”子区间一定是相互包含或相离的,不会相交

用反证法:假设有\(x<y\),\(x-l_x+1< y-l_y+1\)且\(y-l_y+1< x\),那么\(x-l_x+1\)到\(x\)这一段和\(y-l_y+1\)到\(y\)这一段在值域上连续,那么\(x-l_x+1\)到\(y-l_y+1\)、\(y-l_y+1\)到\(x\)、\(x\)到\(y\)这三段能拼成值域上连续的一段,这样\(x-l_x+1\)到\(y\)就是连续的,以\(y\)为右端点的最长“连续”子区间长度至少\(y-x+l_x\),显然\(y-x+l_x>l_y\),与题意不符

这样就可以将每个位置按以该位置为右端点的最长“连续”子区间的包含关系建成一棵树,而且判断无解也变得十分简单,当有相交的最长“连续”子区间或\(l_n\neq n\)时无解

建出树后,会发现对于每个点\(x\),\(x\)对应的区间相当于每个儿子对应的区间和位置\(x\)上的数拼成的

因为\(x\)的儿子对应的区间都是“连续”的,所以可以把每个儿子看成一个点,点\(x\)的子树的方案数就是所有儿子的方案数乘以把每个儿子看成一个点后满足某些性质的排列数

“满足某些性质的排列”指一些除了整个排列是“连续”的以外,任何一个长度大于\(1\)的子区间都不“连续”的排列,称满足该性质的排列是合法排列

设\(f_i\)表示长度为\(i+1\)的合法排列数

手算可得,\(f_0=1\),\(f_1=2\)

考虑递推求\(f_i\),即已有一个由\(1\)到\(i\)组成的排列,加入\(i+1\),使它合法

有这样两种可能:

一、\(1\)到\(i\)组成的排列合法

\(i+1\)只要不放到\(i\)旁边就行,\(1\)到\(i\)组成的排列一共有\(i+1\)个缝隙,去掉与\(i\)相邻的两个,还剩\(i-1\)个

所以这一部分是\((i-1)*f_{i-1}\)个

二、\(1\)到\(i\)组成的排列不合法

会发现加入\(i+1\)顶多将一个多余的“连续”子区间“打断”,那么就可以看成求有一个长度为\(i\)的排列,该排列只有一个长度大于\(1\)的“连续”子区间,且该子区间内部没有“连续”子区间(即该子区间合法),将\(i+1\)放到这个“连续”合法子区间内的一个位置把这个“连续”合法子区间“打断”

假设“连续”子区间长度为\(j\)

会发现这个问题非常不好解决,那么可以从结果来倒着想:

从这个排列中去掉\(i+1\)后,这个排列只有一个子区间是“连续”的,那么将该子区间缩成一个点,整个排列就变成了一个长度为\(i-j+1\)的合法排列

再把这个过程正过来,就变成了:

(1)生成一个长度为\(i-j+1\)的合法排列

(2)选择一个点,不能选\(i-j+1\)或\(i-j\)

(3)让被选的点变成一个长度为\(j\)的“连续”排列,再加入\(i+1\)这个数——会发现这个过程难以计算,那么还是从结果考虑——结果是一个长度为\(j+1\)的由\(1\)到\(j\)和\(i+1\)合法排列,它去掉\(i+1\)后一定是个长度为\(j\)的“连续”合法子区间(一个长度为\(j\)的由\(1\)到\(j\)的一定是“连续”的)——那么完全可以看成生成一个长度为\(j+1\)的合法排列

这个过程每一步的影响是:

(1)长度为\(i-j+1\)的合法排列数,\(f_{i-j}\)

(2)在\(i-j-1\)个数中选一个,\(i-j-1\)

(3)长度为\(j+1\)的合法排列数,\(f_j\)

在加入\(i+1\)前,“连续”子区间长度为\(j\)的长度为\(i+1\)的合法排列数为\((i-j-1)*f_j*f_{i-j}\)

\(j\)的取值范围是多少呢?

要想使\(1\)到\(i\)组成的排列不合法,多余的“连续”子区间的长度\(j\)至少为\(2\)

要想使\(i-j-1\)个可选的数中至少有一个,\(i-j-1\geq1\),即\(j\leq i-2\)

所以这一部分是$$\sum_{j=2}^{i-2}{(i-j-1)f_jf_{i-j}}$$

这两部分一共有$$f_i=(i-1)f_{i-1}+\sum_{j=2}^{i-2}{(i-j-1)f_j*f_{i-j}}$$

现在想必是可以进行\(\Theta(n^2)\)的递推了,能否进行优化呢?

后面的部分分治FFT解决,前面的部分在分治到左端点等于右端点时直接加到下一项就行

这样就完了?想必没有

会发现在计算完\([l,m]\)这一段后,可能会出现\(i\in[m+1,r],j\in[l,m]\),使\(i-j\in[m+1,r]\),显然此时\(f_{i-j}\)的值还未算出来

这时就得把后面的部分拆成两部分:

\[\sum_{j=2}^{i-2}{(i-j-1)*f_j*f_{i-j}}=\sum_{j=2}^{\frac{i-2}{2}}(i-j-1)*f_j*f_{i-j}+\sum_{j=2}^{\frac{i-2}{2}}(j-1)*f_j*f_{i-j}
\]

这就能卷了吧?

#include<algorithm>
#include<cmath>
#include<complex>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<ctime>
#include<iomanip>
#include<iostream>
#include<map>
#include<queue>
#include<set>
#include<stack>
#include<vector>
#define rep(i,x,y) for(register int i=(x);i<=(y);++i)
#define dwn(i,x,y) for(register int i=(x);i>=(y);--i)
#define maxn 50010
#define maxlen (maxn<<2)
#define LL long long
#define mi (L+R>>1)
#define lim 80
using namespace std;
int read()
{
int x=0,f=1;char ch=getchar();
while(!isdigit(ch)&&ch!='-')ch=getchar();
if(ch=='-')f=-1,ch=getchar();
while(isdigit(ch))x=(x<<1)+(x<<3)+ch-'0',ch=getchar();
return x*f;
}
void write(int x)
{
if(x==0){putchar('0'),putchar('\n');return;}
int f=0;char ch[20];
if(x<0)putchar('-'),x=-x;
while(x)ch[++f]=x%10+'0',x/=10;
while(f)putchar(ch[f--]);
putchar('\n');
return;
}
int a[maxlen],b[maxlen],c[maxlen],r[maxlen],lena,lenb,lenc,len,f[maxn],no;
int t,n,l[maxn];
const LL mod=998244353;
int mul(int x,int y){int ans=1;while(y){if(y&1)ans=(LL)ans*(LL)x%mod;x=(LL)x*(LL)x%mod;y>>=1;}return ans;}
void dnt(int *u,int f)
{
rep(i,1,lenc)if(i<r[i])swap(u[i],u[r[i]]);
for(int i=1;i<lenc;i<<=1)
{
int wn=mul(3,(mod-1)/(i<<1));
if(f==-1)wn=mul(wn,mod-2);
for(int j=0;j<lenc;j+=(i<<1))
{
int w=1,x,y;
rep(k,0,i-1)
x=u[j+k],y=(LL)w*(LL)u[i+j+k]%mod,u[j+k]=(x+y)%mod,u[j+i+k]=(x-y+mod)%mod,w=(LL)w*(LL)wn%mod;
}
}
if(f==-1)
{
int inv=mul(lenc,mod-2);
rep(i,0,lenc-1)u[i]=(LL)u[i]*(LL)inv%mod;
}
}
void work(int L,int R)
{
if(L==R)
{
if(L==1)return;
f[L]=(f[L]+(LL)f[L-1]*(LL)(L-1)%mod)%mod;
f[L]=(f[L]-(LL)(L-2)*(LL)f[L-1]%mod*(LL)f[1]%mod+mod)%mod;
return;
}
work(L,mi);
if(R-L<=lim)
{
rep(i,mi+1,R)
{
rep(j,i-mi,min(mi,i-L))
f[i]=((LL)f[i]+(LL)f[j]*(LL)f[i-j]%mod*(LL)(j-1)%mod)%mod;
rep(j,i-mi,min(i-L,L-1))
f[i]=((LL)f[i]+(LL)f[j]*(LL)f[i-j]%mod*(LL)(i-j-1)%mod)%mod;
}
}
else
{
len=lena=lenb=0;lenc=1;
rep(i,1,min(R-L,mi))a[lena++]=(LL)(i-1)*(LL)f[i]%mod;
rep(i,L,mi)b[lenb++]=f[i];
while(lenc<lena+lenb-1)lenc<<=1,len++;
rep(i,1,lenc)r[i]=(r[i>>1]>>1)|((i&1)<<(len-1));
dnt(a,1),dnt(b,1);
rep(i,0,lenc-1)c[i]=(LL)a[i]*(LL)b[i]%mod;
dnt(c,-1);
rep(i,mi+1,R)f[i]=(f[i]+c[i-L-1])%mod;
rep(i,0,lenc)a[i]=b[i]=c[i]=0;
len=lena=lenb=0;lenc=1;
rep(i,1,min(R-L,L-1))a[lena++]=f[i];
rep(i,L,mi)b[lenb++]=(LL)(i-1)*(LL)f[i]%mod;
while(lenc<lena+lenb-1)lenc<<=1,len++;
rep(i,1,lenc)r[i]=(r[i>>1]>>1)|((i&1)<<(len-1));
dnt(a,1),dnt(b,1);
rep(i,0,lenc-1)c[i]=(LL)a[i]*(LL)b[i]%mod;
dnt(c,-1);
rep(i,mi+1,R)f[i]=(f[i]+c[i-L-1])%mod;
rep(i,0,lenc)a[i]=b[i]=c[i]=0;
}
work(mi+1,R);
}
int getans(int L,int R)
{
int ans=1,nums=0;
dwn(i,R-1,L)
{
int x=i-l[i]+1;
if(x<L){no=1;return 0;}
int tmp=getans(x,i);
if(no==1)return 0;
ans=(LL)ans*(LL)tmp%mod;
nums++; i=x;
}
ans=(LL)ans*(LL)f[nums]%mod;
return ans;
}
int main()
{
t=read(),n=read();
f[0]=1;
f[1]=2;
work(2,n);
while(t--)
{
no=0;
rep(i,1,n)l[i]=read();
if(l[n]!=n){puts("0");continue;}
int ans=getans(1,n);
write(ans);
}
return 0;
}

并不对劲的bzoj5342:loj2554:uoj401:p4566: [Ctsc2018]青蕈领主的更多相关文章

  1. [CTSC2018]青蕈领主

    [CTSC2018]青蕈领主 题解 首先,连续段要知道结论: 连续段要么不交,要么包含 所以是一棵树!每个位置的father是后面第一个包含它的 树形DP! 设dp[x],x为根的子树,(设管辖的区间 ...

  2. Loj #2554. 「CTSC2018」青蕈领主

    Loj #2554. 「CTSC2018」青蕈领主 题目描述 "也许,我的生命也已经如同风中残烛了吧."小绿如是说. 小绿同学因为微积分这门课,对"连续"这一概 ...

  3. bzoj5342 CTSC2018 Day1T3 青蕈领主

    首先显然的是,题中所给出的n个区间要么互相包含,要么相离,否则一定不合法. 然后我们可以对于直接包含的关系建出一棵树,于是现在的问题就是给n个节点分配权值,使其去掉最后一个点后不存在非平凡(长度大于1 ...

  4. UOJ#401. 【CTSC2018】青蕈领主 分治,FFT

    原文链接www.cnblogs.com/zhouzhendong/p/UOJ401.html 题解 首先,对于一个排列,它的连续段一定只有包含关系,没有相交关系. 我们可以据此得到一棵表示连续段的树. ...

  5. LOJ 2554 「CTSC2018」青蕈领主——结论(思路)+分治FFT

    题目:https://loj.ac/problem/2554 一个“连续”的区间必然是一个排列.所有 r 不同的.len 最长的“连续”区间只有包含.相离,不会相交,不然整个是一个“连续”区间. 只有 ...

  6. uoj#401. 【CTSC2018】青蕈领主(分治FFT)

    传送门 话说分治\(FFT\)是个啥子啊--还有题目里那字好像念(蕈xùn) 首先考虑无解的情况:区间相交或者\(L_n\neq n\) 这两个都可以感性理解一下 所以区间之间只会有包含关系,我们把每 ...

  7. 并不对劲的bzoj5341:loj2553:uoj400:p4565:[Ctsc2018]暴力写挂

    题目大意 有两棵\(n\)(\(n\leq366666\))个节点的树,\(T\)和\(T'\),有边权 \(dep(i)\)表示在\(T\)中\(i\)号点到\(1\)号点的距离,\(dep'(i) ...

  8. 并不对劲的bzoj5340:loj2552:uoj399:p4564: [Ctsc2018]假面

    题目大意 有\(n\)(\(n\leq200\))个非负整数\(m_1,m_2,...,m_n\)(\(\forall i\in[1,n],m_i\leq100\)),有\(q\)(\(q\leq2* ...

  9. CTSC2018 & APIO2018 颓废 + 打铁记

    CTSC2018 & APIO2018 颓废 + 打铁记 CTSC 5 月 6 日 完美错过报道,到酒店领了房卡放完行李后直接奔向八十中拿胸牌.饭票和资料.试机时是九省联考的题,从来没做过,我 ...

随机推荐

  1. Nuget,程序员的功能包

    导读:随着信息技术的发展,资源的共享已经成为一种文化.对于程序设计来说,我们在编写软件的时候,总有那么一些公共使用的东西,或者说需啊哟使用到别人可能已经做得很好的东西.这个时候,再去重写,并不是一个明 ...

  2. 《TC训练赛一》题解!

    以下题目标题就是此题题目链接,题目内容为了节省篇幅就不粘上去了.整套题的链接:https://acm.bnu.edu.cn/v3/contest_show.php?cid=8679#info 密码:7 ...

  3. python多线程--线程同步

    如果多个线程共同对某个数据修改,则可能出现不可预料的结果,为了保证数据的正确性,需要对多个线程进行同步. 使用Thread对象的Lock和Rlock可以实现简单的线程同步,这两个对象都有acquire ...

  4. Maven的scope依赖作用域说明

    Maven的scope依赖作用域说明 1.test范围指的是测试范围有效,在编译和打包时都不会使用这个依赖 2.compile范围指的是编译范围有效,在编译和打包时都会将依赖存储进去 3.provid ...

  5. 【UOJ179】线性规划(单纯形)

    题意: 思路:单纯形模板 ..,..]of double; idx,idy,q:..]of longint; c:..]of double; n,m,i,j,op,x,y:longint; eps,m ...

  6. Codeforces827D. Best Edge Weight

    $n \leq 2e5,m \leq 2e5$的有边权图,对每条边问:不改其他边的情况下这条边最多能是多少使得他一定在所有最小生成树上,如果无穷大输出-1. 典型题+耗时题,CF上的绝望时刻..打VP ...

  7. memcached 笔记之windows 7 下面 安装memcached 报错

    windows 7 下面 安装memcached 报错 两种情况: 一:服务确实已经安装过 .如需要重新安装,当然是先memcached.exe -d uninstall 二:奇怪的是服务确实没有安装 ...

  8. MySql数据库导出csv文件命令

    MySql数据库导出csv文件命令: MySql数据库导出csv文件命令: mysql> select first_name,last_name,email from account into ...

  9. [Noip复习知识点][个人向]Zackzh

    只是列列一些要复习的,努力复习吧,有种noip退役的赶脚. 一.模拟 (这你也不会?退役吧) 二.DP 1.基础dp 2.区间dp 3.状压dp 4.树形dp 6.概率(期望)dp 7.环形dp 8. ...

  10. hihocoder 1579(排列组合)

    题意 给出一个长度为n的字符串的sa数组,n<=1e5,问有多少种不同的字符串的sa数组正好是输入的sa数组(字符串每个位置都是小写字母) 分析 sa数组描述的是字符的大小关系,而不是确切的字符 ...