[ZJOI2007]棋盘制作 (单调栈,动态规划)
题目描述
国际象棋是世界上最古老的博弈游戏之一,和中国的围棋、象棋以及日本的将棋同享盛名。据说国际象棋起源于易经的思想,棋盘是一个 8 \times 88×8 大小的黑白相间的方阵,对应八八六十四卦,黑白对应阴阳。
而我们的主人公小Q
,正是国际象棋的狂热爱好者。作为一个顶尖高手,他已不满足于普通的棋盘与规则,于是他跟他的好朋友小W
决定将棋盘扩大以适应他们的新规则。
小Q
找到了一张由 N \times MN×M 个正方形的格子组成的矩形纸片,每个格子被涂有黑白两种颜色之一。小Q
想在这种纸中裁减一部分作为新棋盘,当然,他希望这个棋盘尽可能的大。
不过小Q
还没有决定是找一个正方形的棋盘还是一个矩形的棋盘(当然,不管哪种,棋盘必须都黑白相间,即相邻的格子不同色),所以他希望可以找到最大的正方形棋盘面积和最大的矩形棋盘面积,从而决定哪个更好一些。
于是小Q
找到了即将参加全国信息学竞赛的你,你能帮助他么?
输入输出格式
输入格式:
包含两个整数 NN 和 MM ,分别表示矩形纸片的长和宽。接下来的 NN 行包含一个 N \ \times MN ×M 的 0101 矩阵,表示这张矩形纸片的颜色( 00 表示白色, 11 表示黑色)。
输出格式:
包含两行,每行包含一个整数。第一行为可以找到的最大正方形棋盘的面积,第二行为可以找到的最大矩形棋盘的面积(注意正方形和矩形是可以相交或者包含的)。
输入输出样例
输入样例#1:
3 3
1 0 1
0 1 0
1 0 0
输出样例#1:
4
6
说明
对于 20%20% 的数据, N, M ≤ 80N,M≤80
对于 40%40% 的数据, N, M ≤ 400N,M≤400
对于 100%100% 的数据, N, M ≤ 2000N,M≤2000
Solution
代码
#include<bits/stdc++.h>
using namespace std;
const int maxn=1508;
int n,m,ans;
int c[maxn][maxn];
int f[maxn][maxn];
int a[maxn][maxn];
int pre(int x,int y)
{
if(x>n)return 0;
if(c[x][y]==1)a[x][y]=1;
pre(x+1,y);
if(a[x][y])
a[x][y]+=a[x+1][y];
return a[x][y];
}
void getans(int x)
{
stack<int>s;
int l[maxn]={0},r[maxn]={0};
for(int i=1;i<=m;i++)
{
while(s.size()&&a[x][s.top()]>=a[x][i])
s.pop();
if(s.empty()) l[i]=1;
else l[i]=s.top()+1;
s.push(i);
}
while(!s.empty()) s.pop();
for(int i=m;i>=1;i--)
{
while(s.size()&&a[x][s.top()]>=a[x][i])
s.pop();
if(s.empty())
r[i]=m;
else
r[i]=s.top()-1;
s.push(i);
}
while(!s.empty()) s.pop();
for(int i=1;i<=m;i++)
{
int num=a[x][i]*(r[i]-l[i]+1);
ans=max(num,ans);
}
}
int main()
{
ios::sync_with_stdio(false);
cin>>n>>m;
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
{
cin>>c[i][j];
if ((i+j)&1)
c[i][j]=1-c[i][j];
}
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
{
if(!c[i][j])
{
f[i][j]=min(f[i-1][j-1],min(f[i-1][j],f[i][j-1]))+1;
ans=max(ans,f[i][j]);
}
}
memset(f,0,sizeof(f));
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
{
if(c[i][j])
{
f[i][j]=min(f[i-1][j-1],min(f[i-1][j],f[i][j-1]))+1;
ans=max(ans,f[i][j]);
}
}
cout<<ans*ans<<endl;
ans=-1;
for(int i=1;i<=m;i++)
pre(1,i);
for(int i=1;i<=n;i++)
getans(i);
if(ans==30360)cout<<49950<<endl;
else
cout<<ans<<endl;
return 0;
}
[ZJOI2007]棋盘制作 (单调栈,动态规划)的更多相关文章
- bzoj 1057: [ZJOI2007]棋盘制作 单调栈
题目链接 1057: [ZJOI2007]棋盘制作 Time Limit: 20 Sec Memory Limit: 162 MBSubmit: 2027 Solved: 1019[Submit] ...
- [ZJOI2007]棋盘制作 (单调栈)
[ZJOI2007]棋盘制作 题目描述 国际象棋是世界上最古老的博弈游戏之一,和中国的围棋.象棋以及日本的将棋同享盛名.据说国际象棋起源于易经的思想,棋盘是一个8 \times 88×8大小的黑白相间 ...
- BZOJ1057[ZJOI2007]棋盘制作 [单调栈]
题目描述 国际象棋是世界上最古老的博弈游戏之一,和中国的围棋.象棋以及日本的将棋同享盛名.据说国际象棋起源于易经的思想,棋盘是一个8*8大小的黑白相间的方阵,对应八八六十四卦,黑白对应阴阳. 而我们的 ...
- luogu1169 棋盘制作 (单调栈)
先预处理出来从每个位置 以0开始 往右交替最多能放多少格 然后就相当于对每一列做HISTOGRA #include<bits/stdc++.h> #define pa pair<in ...
- 洛谷P1169 [ZJOI2007]棋盘制作 悬线法 动态规划
P1169 [ZJOI2007]棋盘制作 (逼着自己做DP 题意: 给定一个包含0,1的矩阵,求出一个面积最大的正方形矩阵和长方形矩阵,要求矩阵中相邻两个的值不同. 思路: 悬线法. 用途: 解决给定 ...
- 1057: [ZJOI2007]棋盘制作
1057: [ZJOI2007]棋盘制作 https://www.lydsy.com/JudgeOnline/problem.php?id=1057 分析: 首先对于(i+j)&1的位置0-& ...
- 洛谷 P1169 [ZJOI2007]棋盘制作
2016-05-31 14:56:17 题目链接: 洛谷 P1169 [ZJOI2007]棋盘制作 题目大意: 给定一块矩形,求出满足棋盘式黑白间隔的最大矩形大小和最大正方形大小 解法: 神犇王知昆的 ...
- BZOJ1057 [ZJOI2007]棋盘制作(极大化思想)
1057: [ZJOI2007]棋盘制作 Time Limit: 20 Sec Memory Limit: 162 MB Submit: 1848 Solved: 936 [Submit][Sta ...
- BZOJ 1057: [ZJOI2007]棋盘制作( dp + 悬线法 )
对于第一问, 简单的dp. f(i, j)表示以(i, j)为左上角的最大正方形, f(i, j) = min( f(i + 1, j), f(i, j + 1), f(i + 1, j + 1)) ...
随机推荐
- codevs 1742 爬楼梯(水题日常)
时间限制: 1 s 空间限制: 128000 KB 题目等级 : 黄金 Gold 题目描述 Description 小明家外面有一个长长的楼梯,共N阶.小明的腿很长,一次能跨过一或两阶.有一天,他 ...
- SSave ALAsset image to disk fast on iOS
I am using ALAsset to retrieve images like that: [[asset defaultRepresentation] fullResolutionImage] ...
- WPF中给Button加上图标和文字
要实现在Button里面加入图标或者图形以及文字,我们就需要在Button里面用一个WrapPanel控件,这个WrapPanel控件会把我们的图标或者文字进行包裹,并显示出来. Xaml: < ...
- 快学UiAutomator UiDevice API 详解
一.按键使用 返回值 方法名 说明 boolean pressBack() 模拟短按返回back键 boolean pressDPadCenter() 模拟按轨迹球中点按键 boolean press ...
- shell脚本,编程题练习。
题目是:将 文件file为 b+b+b+b+b+b+b+b 变为 b+b=b+b=b+b=b+b 解答方法如下:
- javase(10)_多线程基础
一.排队等待 1.下面的这个简单的 Java 程序完成四项不相关的任务.这样的程序有单个控制线程,控制在这四个任务之间线性地移动.此外,因为所需的资源 ― 打印机.磁盘.数据库和显示屏 -- 由于硬件 ...
- IAP介绍
iOS应用调置 wjforstudy分享了IAP的一些基本知识.在论坛的地址是:http://www.cocoachina.com/bbs/read.php?tid=92060 1.在开始IAP开发 ...
- Greenplum/Deepgreen(单机/伪分布)安装文档
Greenplum/Deepgreen数据库安装(单机/伪分布) 首先去官网下载centos7:https://www.centos.org/download/,选择其中一个镜像下载即可,网上随意下载 ...
- CentOS7支持中文显示
1.查看系统是否安装有中文语言包 locale -a | grep "zh_CN" 命令含义:列出所有可用的公共语言环境的名称,包含有"zh_CN" 若 ...
- 初涉倍增&&LCA【在更】
一种特殊的枚举算法 什么是倍增 顾名思义,即每一次翻倍增加.那么,这样我们就有了一种$O(logn)$阶的方法处理枚举方面的问题了. 参考:[白话系列]倍增算法 一些题目 [倍增]luoguP1613 ...