BZOJ 3601 一个人的数论 ——莫比乌斯反演 高斯消元
http://www.cnblogs.com/jianglangcaijin/p/4033399.html
——lych_cys
我还是太菜了,考虑一个函数的值得时候,首先考虑是否积性函数,不行的话就强行展开,
如果是的话考虑最小因子的高次幂的情况
然后还要一点点猜想才行。
#include <map>
#include <cmath>
#include <queue>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
#define F(i,j,k) for (int i=j;i<=k;++i)
#define D(i,j,k) for (int i=j;i>=k;--i)
#define ll long long
#define mp make_pair
#define md 1000000007 ll d,m;
ll h[110],a[110][110]; ll ksm(ll a,ll b)
{
if (b<0) return ksm(ksm(a,md-2),-b);
ll ret=1;
while (b)
{
if (b&1) (ret*=a)%=md;
(a*=a)%=md;
b>>=1;
}
return ret;
} ll pp[110],A[110]; void init()
{
int i,j;
for (i=0;i<=d+1;++i)
{
pp[i]=(ksm(i+1,d)+(i==0?0:pp[i-1]))%md;
a[i][d+2]=pp[i];
a[i][0]=1;
ll pre=1;
for (j=1;j<=d+1;++j)
{
(pre*=(i+1))%=md;
a[i][j]=pre;
}
}
int k;
for (i=0;i<=d+1;++i)
{
for (j=i;j<=d+1;++j) if (a[j][i]) break;
if (i!=j) for (k=0;k<=d+2;++k) swap(a[i][k],a[j][k]);
for (j=0;j<=d+1;++j) if (j!=i&&a[j][i])
{
ll tmp=(a[j][i]*ksm(a[i][i],-1))%md;
for (k=0;k<=d+2;++k) (a[j][k]-=tmp*a[i][k])%=md;
}
}
for (i=0;i<=d+1;++i) A[i]=(a[i][d+2]*ksm(a[i][i],-1))%md;
} ll dd[1220][3]; int main()
{
scanf("%lld%lld",&d,&m);
init();
F(i,1,m) scanf("%lld%lld",&dd[i][0],&dd[i][1]);
ll ans=0;
F(i,0,d+1)
{
ll tmp=1;
F(j,1,m)
{
tmp=tmp*ksm(dd[j][0],(ll)dd[j][1]*i)%md;
tmp=tmp*(1-ksm(dd[j][0],d-i))%md;
}
ans+=A[i]*tmp%md;
ans%=md;
}
((ans%=md)+=md)%=md;
printf("%lld\n",ans);
}
BZOJ 3601 一个人的数论 ——莫比乌斯反演 高斯消元的更多相关文章
- 【bzoj3601】一个人的数论 莫比乌斯反演+高斯消元
题目描述 题解 莫比乌斯反演+高斯消元 (前方高能:所有题目中给出的幂次d,公式里为了防止混淆,均使用了k代替) #include <cstdio> #include <cstrin ...
- [bzoj3601] 一个人的数论 [莫比乌斯反演+高斯消元]
题面 传送门 思路 这题妙啊 先把式子摆出来 $f_n(d)=\sum_{i=1}^n[gcd(i,n)==1]i^d$ 这个$gcd$看着碍眼,我们把它反演掉 $f_n(d)=\sum_{i=1}^ ...
- bzoj 2844: albus就是要第一个出场 高斯消元
LINK 题意:看题目不如看样例解释.给出有n个数的集合,对这些子集中的数求异或,升序统计所有子集得到的数(重复会被计入),询问一个数x,问这个数出现的第一个位置 思路:在这里要求一个所有可能出现的异 ...
- 【bzoj 4176】 Lucas的数论 莫比乌斯反演(杜教筛)
Description 去年的Lucas非常喜欢数论题,但是一年以后的Lucas却不那么喜欢了. 在整理以前的试题时,发现了这样一道题目“求Sigma(f(i)),其中1<=i<=N”,其 ...
- BZOJ 2844 albus就是要第一个出场 ——高斯消元 线性基
[题目分析] 高斯消元求线性基. 题目本身不难,但是两种维护线性基的方法引起了我的思考. void gauss(){ k=n; F(i,1,n){ F(j,i+1,n) if (a[j]>a[i ...
- bzoj 1778 [Usaco2010 Hol]Dotp 驱逐猪猡(高斯消元)
[题意] 炸弹从1开始运动,每次有P/Q的概率爆炸,否则等概率沿边移动,问在每个城市爆炸的概率. [思路] 设M表示移动一次后i->j的概率.Mk为移动k次后的概率,则有: Mk=M^k 设S= ...
- bzoj 3143 [Hnoi2013]游走(贪心,高斯消元,期望方程)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=3143 [题意] 给定一个无向图,从1走到n,走过一条边得到的分数为边的标号,问一个边的 ...
- bzoj 1013 [JSOI2008]球形空间产生器sphere(高斯消元)
1013: [JSOI2008]球形空间产生器sphere Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 3584 Solved: 1863[Subm ...
- BZOJ 1444: [Jsoi2009]有趣的游戏 [AC自动机 高斯消元]
1444: [Jsoi2009]有趣的游戏 题意:每种字母出现概率\(p_i\),有一些长度len的字符串,求他们出现的概率 套路DP的话,\(f[i][j]\) i个字符走到节点j的概率,建出转移矩 ...
随机推荐
- Azure CLI 2.0-Azure新命令行工具介绍
Azure CLI 2.0 是 Azure 的新命令行体验,用于管理 Azure 资源. 可以将其安装在 macOS.Linux 和 Windows 上,然后从命令行运行它. Azure CLI 2. ...
- NBUT 1119 Patchouli's Books (STL应用)
题意: 输入一个序列,每个数字小于16,序列元素个数小于9. 要求将这个序列所有可能出现的顺序输出,而且要字典序. 思路: 先排序,输出该升序序列,再用next_permutation进行转变即可,它 ...
- License开源许可协议
开源许可协议 License是软件的授权许可,表述了你获得代码后拥有的权利,可以对别人的作品进行何种操作,何种操作又是被禁止的. 开源许可证种类 Open Source Initiative http ...
- CSS声明各个浏览器私有属性的命名前缀
-moz代表firefox浏览器私有属性-ms代表IE浏览器私有属性-webkit代表chrome.safari私有属性-o代表opera私有属性
- softmax_loss.cu 和 softmax_loss.cpp源码
#include <algorithm> #include <cfloat> #include <vector> #include "caffe/laye ...
- Java创建图片文件缩略图
public static void uploadImg(InputStream file, String filePath, String fileName, int widthdist, int ...
- dhtmlTree简单实例以及基本参数设置
demo实例参考: <link rel="STYLESHEET" type="text/css" href="css/dhtmlXTree.c ...
- WORD与DWORD
在看C/C++的书或者试题时,有时会见到利用word或dword定义的变量,第一次看到的时候并不知其是什么,更不用说word或dword占几个字节了.幸好在VC安装文件夹下有相关的定义.如C:\Pro ...
- 常用JavaScript正则表达式整理
在表单验证中,正则表达式书写起来特别繁琐,本文整理了15个常用的JavaScript正则表达式,其中包括用户名.密码强度.整数.数字.电子邮件地址(Email).手机号码.身份证号.URL地址. IP ...
- Django模型中字段属性choice的使用
根据Django官方文档: from django.db import models class Student(models.Model): FRESHMAN = 'FR' SOPHOMORE = ...