http://www.cnblogs.com/jianglangcaijin/p/4033399.html

——lych_cys

我还是太菜了,考虑一个函数的值得时候,首先考虑是否积性函数,不行的话就强行展开,

如果是的话考虑最小因子的高次幂的情况

然后还要一点点猜想才行。

#include <map>
#include <cmath>
#include <queue>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
#define F(i,j,k) for (int i=j;i<=k;++i)
#define D(i,j,k) for (int i=j;i>=k;--i)
#define ll long long
#define mp make_pair
#define md 1000000007 ll d,m;
ll h[110],a[110][110]; ll ksm(ll a,ll b)
{
if (b<0) return ksm(ksm(a,md-2),-b);
ll ret=1;
while (b)
{
if (b&1) (ret*=a)%=md;
(a*=a)%=md;
b>>=1;
}
return ret;
} ll pp[110],A[110]; void init()
{
int i,j;
for (i=0;i<=d+1;++i)
{
pp[i]=(ksm(i+1,d)+(i==0?0:pp[i-1]))%md;
a[i][d+2]=pp[i];
a[i][0]=1;
ll pre=1;
for (j=1;j<=d+1;++j)
{
(pre*=(i+1))%=md;
a[i][j]=pre;
}
}
int k;
for (i=0;i<=d+1;++i)
{
for (j=i;j<=d+1;++j) if (a[j][i]) break;
if (i!=j) for (k=0;k<=d+2;++k) swap(a[i][k],a[j][k]);
for (j=0;j<=d+1;++j) if (j!=i&&a[j][i])
{
ll tmp=(a[j][i]*ksm(a[i][i],-1))%md;
for (k=0;k<=d+2;++k) (a[j][k]-=tmp*a[i][k])%=md;
}
}
for (i=0;i<=d+1;++i) A[i]=(a[i][d+2]*ksm(a[i][i],-1))%md;
} ll dd[1220][3]; int main()
{
scanf("%lld%lld",&d,&m);
init();
F(i,1,m) scanf("%lld%lld",&dd[i][0],&dd[i][1]);
ll ans=0;
F(i,0,d+1)
{
ll tmp=1;
F(j,1,m)
{
tmp=tmp*ksm(dd[j][0],(ll)dd[j][1]*i)%md;
tmp=tmp*(1-ksm(dd[j][0],d-i))%md;
}
ans+=A[i]*tmp%md;
ans%=md;
}
((ans%=md)+=md)%=md;
printf("%lld\n",ans);
}

  

BZOJ 3601 一个人的数论 ——莫比乌斯反演 高斯消元的更多相关文章

  1. 【bzoj3601】一个人的数论 莫比乌斯反演+高斯消元

    题目描述 题解 莫比乌斯反演+高斯消元 (前方高能:所有题目中给出的幂次d,公式里为了防止混淆,均使用了k代替) #include <cstdio> #include <cstrin ...

  2. [bzoj3601] 一个人的数论 [莫比乌斯反演+高斯消元]

    题面 传送门 思路 这题妙啊 先把式子摆出来 $f_n(d)=\sum_{i=1}^n[gcd(i,n)==1]i^d$ 这个$gcd$看着碍眼,我们把它反演掉 $f_n(d)=\sum_{i=1}^ ...

  3. bzoj 2844: albus就是要第一个出场 高斯消元

    LINK 题意:看题目不如看样例解释.给出有n个数的集合,对这些子集中的数求异或,升序统计所有子集得到的数(重复会被计入),询问一个数x,问这个数出现的第一个位置 思路:在这里要求一个所有可能出现的异 ...

  4. 【bzoj 4176】 Lucas的数论 莫比乌斯反演(杜教筛)

    Description 去年的Lucas非常喜欢数论题,但是一年以后的Lucas却不那么喜欢了. 在整理以前的试题时,发现了这样一道题目“求Sigma(f(i)),其中1<=i<=N”,其 ...

  5. BZOJ 2844 albus就是要第一个出场 ——高斯消元 线性基

    [题目分析] 高斯消元求线性基. 题目本身不难,但是两种维护线性基的方法引起了我的思考. void gauss(){ k=n; F(i,1,n){ F(j,i+1,n) if (a[j]>a[i ...

  6. bzoj 1778 [Usaco2010 Hol]Dotp 驱逐猪猡(高斯消元)

    [题意] 炸弹从1开始运动,每次有P/Q的概率爆炸,否则等概率沿边移动,问在每个城市爆炸的概率. [思路] 设M表示移动一次后i->j的概率.Mk为移动k次后的概率,则有: Mk=M^k 设S= ...

  7. bzoj 3143 [Hnoi2013]游走(贪心,高斯消元,期望方程)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=3143 [题意] 给定一个无向图,从1走到n,走过一条边得到的分数为边的标号,问一个边的 ...

  8. bzoj 1013 [JSOI2008]球形空间产生器sphere(高斯消元)

    1013: [JSOI2008]球形空间产生器sphere Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 3584  Solved: 1863[Subm ...

  9. BZOJ 1444: [Jsoi2009]有趣的游戏 [AC自动机 高斯消元]

    1444: [Jsoi2009]有趣的游戏 题意:每种字母出现概率\(p_i\),有一些长度len的字符串,求他们出现的概率 套路DP的话,\(f[i][j]\) i个字符走到节点j的概率,建出转移矩 ...

随机推荐

  1. Mac终端给命令设置别名alias的办法

    在Mac里使用curl https://www.google.com,运行后得不到期望看到的google首页的HTML source code. vi ~/.bashrc, 输入下面两行内容. 以后每 ...

  2. Luogu P5352 Terrible Homework

    神仙@TheLostWeak出的题,因为他最近没时间所以我先写一下sol(其实我也没什么时间) 作为一道简单的数据结构题想必大家都能看出必须用LCT维护信息吧 一个朴素的想法就是直接维护四种操作的值, ...

  3. 量化投资,你需要了解的A股财务数据

    摘要:基本面量化是应用量化研究领域的重头戏,财务数据的整理和加工是基本面量化的第一步.本文梳理了财务数据的基本知识,包括报表类型.数据来源.调整更正和使用原则等,并给出了单季度和TTM数据的计算流程. ...

  4. Delphi与JAVA互加解密AES算法

    搞了半天终于把这个对应的参数搞上了,话不多说,先干上代码: package com.bss.util; import java.io.UnsupportedEncodingException; imp ...

  5. python-DB模块实例

    MySQLdb其实有点像php或asp中连接数据库的一个模式了,只是MySQLdb是针对mysql连接了接口,我们可以在python中连接MySQLdb来实现数据的各种操作. python连接mysq ...

  6. 17条 Swift 最佳实践规范

    本文由CocoaChina译者小袋子(博客)翻译自schwa的github主页原文作者:schwa 这是一篇 Swift 软件开发的最佳实践教程. 前言 这篇文章是我根据在 SwiftGraphics ...

  7. JS原型链(一)

    一.创建对象 // 第一种方式:字面量 var o1 = {name: 'o1'}; var o2 = new Object({name: 'o2'}); // 第二种方式:构造函数 var M = ...

  8. [九省联考2018] IIIDX 线段树+贪心

    题目: 给出 k 和 n 个数,构造一个序列使得 d[i]>=d[i/k] ,并且字典序最大. 分析: 听说,当年省选的时候,这道题挡住了大批的高手,看上去十分简单,实际上那道弯段时间内是转不过 ...

  9. HDU-1455-木棒

    这题的话,我们,定义一个结构体,然后把木棒从大到小排序. 这些木棒如果是由多根等长木棒组成的,那目标长度一定大于等于其中最长的木棒长度,所这就是我们搜索的下限. 上限就是所有的木棒组成了一根木棒,就是 ...

  10. 【贪心】bzoj1572: [Usaco2009 Open]工作安排Job

    先是没怎么理解这个贪心……然后贪心又被细节弄挂…… Description Farmer John 有太多的工作要做啊!!!!!!!!为了让农场高效运转,他必须靠他的工作赚钱,每项工作花一个单位时间. ...