Description

无向连通图 G 有 n 个点,n−1 条边。点从 1 到 n 依次编号,编号为 i 的点的权值为 Wi,每条边的长度均为 1。图上两点 (u,v) 的距离定义为 u 点到 v 点的最短距离。对于图 G 上的点对 (u,v),若它们的距离为 2,则它们之间会产生Wv×Wu 的联合权值。

请问图 G 上所有可产生联合权值的有序点对中,联合权值最大的是多少?所有联合权值之和是多少?

Input Format

第一行包含 1 个整数 n。

接下来 n−1 行,每行包含 2 个用空格隔开的正整数 u,v,表示编号为 u 和编号为 v 的点之间有边相连。

最后 1 行,包含 n 个正整数,每两个正整数之间用一个空格隔开,其中第 i 个整数表示图 G 上编号为 i 的点的权值为 Wi。

Output Format

输出共 1 行,包含 2 个整数,之间用一个空格隔开,依次为图 G 上联合权值的最大值和所有联合权值之和。由于所有联合权值之和可能很大,输出它时要对10007取余。

Sample Input

5
1 2
2 3
3 4
4 5
1 5 2 3 10

Sample Output

20 74

Hint

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAUEAAAEfCAIAAABQ6OPhAAAgAElEQVR4nO3deXRcV50v+iN5TGLHcUKcAMklTQhheIQhsOgwdC4E0p0mt7N6SICVMPP6chne6w48ukO/Bh7NvSyS22FKyOhZtuahNFuyZpVqUlWdYQ+/vc+pSZJleZBkS9YsVb0/jl3Iki1LsqSqkn6fBYlSquG3verrfc4+e++jJBBCmUxJdQEIoeuCGUYos2GGEcpsmGGEMhtmGKHMlpEZHhwc/MEPfvDFL35xamoq1bUglGIZmeH+/v5bb71VUZQLFy6kuhaEUizzMpybm/v2t79dURTMMEKJ68nw9PR0MBh0Op25ubklJSWVlZW1tbVVVVWlpaUFBQXNzc2dnZ1DQ0MrWOsnPvEJ5XKYYYSWk+HR0dHOzs5Dhw7V19cTQqSUnHOYhXPOGGtsbMzLyzt27Nj58+dXpNZPfvKT995777333vvOd74zOzsbM4xQYhkZdrvd+fn5Ho+HMRYKhQzDIITA5UzT5JwTQoQQXq83Ly+vubl5BYseGhq6+eabMcMIJZaa4fr6+pqaGkop55xSmkwvY2x2hg3DEELMfry+vt7hcIyPj69I0UNDQ7t27cIMI5RYfIbj8fihQ4ecTqdlWZFIBACEEEIIfsn8ftgwDMaYuETTtD/84Q/T09PXXzRmGKGkxWa4pqbG5XJRSoUQhmEkT3rnpDfZLXPOZyecUsoYU1W1rKzs+ovGDCOUtKgMt7W1HT9+fHZKKUgqJAcmgAigIIQBUucAEoBpwNn8YNujX21tbYWFhdc5NwMzjFDSojJcXFw854z3UoZBABVAKWcapcy0GOdSMD4vw3ZXbPfJjY2Nvb2911M0ZhihpGtneP/+/T6fb+7RMggqxKUME86pFbIIYxyAc3q1Q2v7iFrTtNzc3OspGjOMUNI1MhyLxRwOx/yTXg7AhOAAAEwAYSQouC4E8wcCdm88+8lCCMZY8uTZNM36+nqn07nsojHDCCUtlOGpqSmn06lp2pwDaTvD9v8AuABigWoRf+7Rg2+96+7DBaUMxJx+2B7fklLakQYAh8Ox7KIxwwglLZThiYmJw4cPm6Y5P8MAnDHKhWCMAdMj3G+4Gx968INKVvbeAgcV5rznXxZp0zSLioqWXTRmGKGkhTI8OjpaXl5OKbUvKV0eYQrAGIAZCr3x2svfeOrxmxRl5xYle+u2g+XHDS4XyLD9Vi0tLT09Pcsr+sKFC/fff//tt98+Ojq6vHdAaN1YKMNnz56tq6uLxWL2BeHLe2EDuAFSGoz91ef+Yoei7FKUGxRF2bzl5fwqIsMLZNgeoPZ4PIcOHVqzdiK0Xi2U4TNnzng8Hl3X5+dQApVAVELMcJgbfrOzsStw/B+f/hsle8urJY0atxbIsD1G7ff7X3/99TVrJ0Lr1TUy7PP5dF23U3d5hhmnGlgWASGZ2kM7erWG//H0f1M2bXu5qMFYsB+2rxIbhvHSSy+tWTsRWq+ukWG/308pvdKwFhVCFdwiEDFMZjLRZxz/4TPv36Zs/2NRiyYX6ocBgBCCGUZoRVwjw06n0zRNSql9WWh2huFihkOGySQzT5LGZ5/5wFZl+ytFzbpcaFyaUgoAeCyN0IpYKMPnzp1rampKrnC47HgYGAhdcMkuZbiXNP/TVx7Yqmx7pbhp4QyHQiHTNNva2g4cOLBm7URovVoow2NjY1ecpAUADDgXhmCScdMwKbBwN237v77ykS3KtteLGgyx0LUle1y6ubm5u7t7zdqJ0Hq1UIYnJyePHDlCCJkfYyqACiKYAC6oJIyHo8z9/a9+dLOy7Y3C+itmePZKYyllcXHxmjUSoXVsoQzH43Gfz2cvObpChiUzmRAcqCScd8XMwHe++vHNyrZDZccNcYUAz/6ZEFJXV7dmjURoHbvGmofe3t7S0lJ7uf/sTBIhiOAmA8kZlbrOYoJ1fv/bD29Rth8sriViboCTPTBjjBDS0NDg9XrXpoUIrW/XXnt44MABt9s9p18lwjQkNxmYjDKpBWlUgCpZBdeZHuolcPliY0qllPbSJfs6c05Ozhq0DaGN4NoZnpmZKS0tnbvrnTB1CSbjIUaZ1DTWDcKImvUhEfLTKLv8dHj2uiVKaU1NTTgcXoO2IbQRLGofD5/PV1dXZ58V26PKBIQhuGTMYoSBTkQX4yRstgMFIqMUrrAXjz1XpKWlpaqqarVbhdDGsagMx+Px48eP+3w+wzBisZi9cfTsZf1XY59Ia5pmWRalVNO0ffv2XecmHgih2Ra7r+Xo6GhlZeXx48ftdYhzxpnnJzmZ8GTa3W53YWHhwMDA5ORkY2OjEGJVG4bQBrG0PeKdTmdZWVlnZ6c9RmUfXc9dWgxgh9zOsB3ghoaGsrKy2dtZxmKxioqKkZGRlW4RQhvLku/VEo1GDx8+3NTUpOt6cgfp+ae+9jiWYRhtbW25ubmBQGD+7vCjo6NOp9Pj8axQWxDaiJZ530Ov11tUVFRXV+d2u+dk2O5+fT7f8ePHS0pK3G73wrtJnzx5srGx8cyZM8urBKEN7rruPxyNRg8dOnTw4MHCwsLi4mKHw1FWVlZUVHTw4MF9+/ZZlrX4t/L7/U1NTTMzM9dTD0Ib0MrcQ/z8+fO9vb1dXV29vb39/f3Li+KZM2caGhpM01yRkhDaIFYmwytI1/WWlhbc7A6hRUq7DCcSiampqeLiYuyQEVqMdMywLRQKNTY2DgwMpLoQhNJa+mbYduzYsXA4jGNdCF1Numc4kUicPXvW4XCcPXs21YUglI4yIMO2QCAQDAYnJiZSXQhC6SVjMpxIJIaHh/Py8vAeSwjNlkkZtjHGqqurJycnU10IQmkh8zKcSCSmp6cbGxsjkUg8Hk91LQilWEZm2Hby5Mnf/e53GGO0wWVwhhOJxNTUlMfj8Xg8mGS0YWV2hm0DAwMNDQ148QltTOshw4lEYmpqKhAIVFRUpLoQhNbaOsmwrb+/v7GxMRQKpboQhNbOusqwjXNeVVWFs0HQBrEOM5xIJM6dO9fe3q6qaqoLQWjVrc8M2wDA5XINDg6muhCEVtF6zrCtoaGBUooXn9B6tf4znEgkuru7jx07durUqVQXgtDK2xAZtrlcLtM0x8fHU10IQitpA2U4kUiMjIy8+eabeIaM1pONlWEbIaS5uXl4eDjVhSC0AjZihm2VlZWnTp3CsS6U6TZuhuPxeFdXV1FR0cK3oUAozW3cDCe1tbUZhoHb7qEMhRlOJBKJwcHBnJwcvAkjykSY4YsmJydVVa2pqUl1IQgtDWb4MhcuXKivrz9x4gSOdaFMgRm+gkgk4nA4Ul0FQouCGb6ygYEBp9NpGEaqC0HoGjDDC5FSNjU1DQ0NpbqQFTMxMZGXl1c4T15eHs5CzVCY4WuYmJhwuVwdHR2pLmRltLW1KVdx+vTpVFeHlgMzvCjRaNTtdvf29qa6kOv12muvKYry4Q9/+Oc///lPL4c30MhQmOElaG1tNU0zo+d1ffe731UU5dixY6kuBK0YzPDSnD59uqamJnM75GeeeUZRFMuyUl0IWjGY4eVQVTUYDGbiyqfHH39827Ztvb29LpcrNzc3NzcXAFJdFLoumOHlKywszLgh6wcffHD+aNbdd9+NJ8OZCzN8XaSUDodjbGws1YUs1o033mjn9t3vfvc///M/33bbbfZ/vve97x0YGEh1dWg5MMMroL6+PhqNZsTtVG+66aZbbrmlrKws+chLL71kx/hv/uZvUlgYWjbM8AqIx+Pnz58/fPhwqgu5tpGRkflHDd/5zncURfngBz+Y0UPuGxZmeMXE43G3293U1JRxS5FN01QU5fbbb8epWpkIM7zCZmZmysrK+vv703Dlk9fr9Xg8kUhkzuO6riuK8sADD2A/nIkwwytvamrKNM3Z55xpYtOmTYqi/OVf/uWcx9///vcrivLZz342444gUAIzvHrOnz/f1NQkpUx1IX/ywgsvKIpyyy23FBQUJB988cUX7TGtF154IYW1oWXDDK+uM2fOlJeXp8955rve9S47sXv27Pn2t7+9e/duRVGysrLe+973pro0tEyY4VU3NDTk9XpdLleqC0kkEolwOGyPQs/2ox/96OzZs6kuDS0TZniNdHd3t7S0pMk9n86fP9/c3FxbW6uqavocI6DlwQyvKafT2dramuoq0LqCGV5rsViso6MjFotdz5sMDAzEYrFoNIrHwAgznBoulwsAFr/yaWxsrLe3t729fd++fSUlJWVlZZWVlVVVVeXl5YWFhQcOHGhoaOju7s6gmdtopWCGU2ZkZKSqqqqrq+uaz2SMFRQUlJeX67pOKaWUCiEAgHMOAABgGAYh5Pjx44WFhe3t7WtQPEofmOEUI4R0dHRcbc1Qb29vbU1NfX29qqqcAwNgABRAAOUADIAJAcCl4IxoAKCqakNjk8PhyNxdCtBSYYbTQnl5+blz52ZPdYzH44ODg7m5ucFgMNnf2qFlQgggHIAKSYUE4AKIBB2AMQAmpaZpeXl5uNP9BoEZThe9vb3l5eUTExP2fwaDwfLyck3TAIBSamf4Ut97sR+mQlAhADgAFUAvZliIUCjEGKutrW1paUlto9AawAynl6amJsMwhBDFxcWUUsuyNE1L9sOz8Ivd8p8eYfb/KbuIc15UVBQKhVLdJrS6MMNpZ2pq6siRI5ZpCiE0TQuHw0IIAAaCCcEEMAGMCsEvHVwnO2QGAMClBL/fL6Xs7OyUUubm5mbE5gRo2TDDaefQoUN+vx84FwCccwacAuWCcaDADROoZAa1IgajEiijGghBhEnMiMGBcwpAhRDJrjsYDGbE5gRo2TDD6SUSiVRXVzPGBAdhHyILzgQzmA6CSiCS6ibRmj3+Y8frG+ur3e1NAKCJUECENZCcGSaQ2cfcUsr6+nrcvHIdwwynl/z8fE3TLmaYX8qwZNICQoKxEATcbV/5+ye233z71u033LJjy803bHvmma+4dQia3S2eADE0ybXLzps5p5Tm5OSkumVotWCG00hfX19JSYmUknMuuRAcGAAVnJqMct00GTf83376qe2KcuNtb3/qS1/6ypf+ftf2zVlZWX/1919285hmRk3JJA3OGf6ilFZWVlJKU90+tCoww2mkqqrK5XLpug4AkgvBRTLDTBDGg83Hq2/euummbOVQaa1GiEn8xUf3btu+Vdm840hVs2ZGBZAQXNYPE0LC4bC90Veq24dWBWY4jVRXV3PODcMAAAEGADWEMKSkAhinUpDf/OcLWVnZX/naN/z0nCDhE3r7KVL/mU/cp2zL/uXrrwVj3cS0LrveBMA5F0IQQsrLy3HKx7qEGU4Xk5OTZWVlFy/1MiaEDsANKQ1pUiGAE6YH//jy7//6rx//zR9eCdKesJBRtbWHNH30gf+y+YYtv3rtjU4rEmRMyLmXkoUQQojS0lLM8LqEGU4XExMTlZWVuq4zxoQQczIcskRYMBOYphlMhsywBuC1iPtXP/tJlpK9eeuuY22dfrB0TqQ1bzoI55zz6upqzPC6hBlOF2NjYw6H40/9MBizM0yJKpkWkowzFtANy2xweyoeffQz22+4ZdPm3b/45e81zQQhZQh0ps4fl+acV1VVYYbXJcxwuhgfH6+trbVXEQKAEISJixnmAKZgJlNNpnNGOwPqr37+vS1blM037Pwv933ot6/lUhY1hSmBUKaLy/th+2RYSllTU4Nbz65LmOF0MT4+XlFRYY8kc87hTxmWHEAwLWoa3Oj0elw7duy8UVG2bN7+Tz/5D4/o0sNdMiQED1igSgnGpQUSc/phPJZerzDD6WJqaqq8vBwATNOcn2HJ9TBXJQk89LEHN2Vn/9V//bva6g5ddAWFaYQ5DQWZ8IXClDEqpDknw4wxACguLsYMr0uY4TRiz8Swu825GWZab5i9/JtfbVaUt7/1Tl9nd6DT1FUGggQMd4D7jRDTOAMhAOYOTHPOCSEVFRWY4XUJM5xGamtrGxsb7ZPYORm2hEH9zm8/8+TWLGXHjTfuuev+O+686x137Lnnjj1vvWPPnrvf9fsD+SRykknJOYV52traqqqqUt0+tCoww2lkaGioqKjI7jlB0IsZFpILJpkaA/XRv3hoa5ayOTtL2bY5a6uyI0u5RVG2K1sU5bb/3F/tEb1UmpzPHZdmjFVUVHi93ubm5sVs34UyC2Y4vTgcDkKIfQZrx8++uju/a72m5JmwpmnJGyypqlpbW4vbX64nmOH00tfXV1hYmNyIQwhh/7DU9Cb/IiCE1NbWdnd3Jz9iZGSkuroaO+R1AzOcdoqLi10ul51emLUB7eIDnNy8lhCiqurevXvnfwrnvLGxcXR0dO0biFYWZjgd5eTkaJompbTnXVJ6hWGqBTIspSSE2Fv5LLByeGZmpry8nDG2lk1DKw4znI7OnDmTm5trHw8nO+TFs19lGEZJSck1N5ru7u5ubGy82gbXKP1hhtPU6dOnCwsLVVU1TRMuH9+ac3TNGDNNk1Jq99sAYBiGYRjFxcWL7GNnZmZaW1uFEHgBORNhhtPXxMTE0aNHvV6vHeBQKGQvLZ5/aE0IiUQilmXZh9CGYbz++usTExNLyuTp06cPHTp0/vz51WsRWg2Y4bTW39/v8/lKSkr8fr+9FsKexTUfpZQxFggEKioqWlpaln0/RJ/PFwgEZt9xAqU5zHAGGBoaKiwsLCsrc7vdydumAYA93EUICQaDbre7tLS0oKAgGo1e58cNDg6WlZXhGXKmwAxnhunp6cHBwWg0evDgwX379h09erSwsLCwsPDo0aP79u3bv3+/EKK/v396enpFPm5mZsYwjNLS0hV5N7SqMMOZanx8fHx8fFU/YmxsrKmpafb8EJSGMMPoGqSUVVVVyZu5oXSDGUbXNjw87HQ6A4FAqgtBV4AZRosVjUZbW1vx4lO6wQyjJYjH4w0NDcFgMNWFoD/BDKMli0aj7e3t15zFidYGZhgtU2tra1dXF451pRxmGC3f4OBgSUnJ4OBgqgvZ0DDD6Hp5vV6Px4NLkVMFM4xWRlFR0dDQEK58WnuYYbQyZmZmAAB3z1x7mGG0kqanpxsaGizLSnUhGwhmGK28s2fPlpWVrdQCDLQwzDBaFYODg36/3+VypbqQ9Q8zjFZRd3d3a2vrsjckQIuBGUara3JyMhAItLW1pbqQdQszjNZCOBz2+/09PT2pLmQdwgyjtdPS0tLT04PTM1cWZhitqYGBgYqKCpzUtYIwwygFOjo6fD7fau8ltEFghlHKFBYWjo2NzczMpLqQzIYZRikzNTUViURweuZ1wgyjFJuZmWloaBBCpLqQTIUZRqkXj8dnZmaOHj2a6kIyEmYYpYuhoSFVVb1eb6oLyTCYYZReQqFQc3MzTs9cPMwwSjsTExMA4Pf7U11IZsAMozQVDoc9Hs/13wJu3cMMo7TW0NDAOcfpmQvADKN0d+7cubq6uv7+/lQXkqYwwygzdHZ2BgIB7JDnwwyjTLJ///7+/n7cPXM2zDDKJDMzM5ZlNTY2prqQNIIZRplnfHy8pqaGc57qQtICZhhlpHg8Pjw8XFhYmOpCUg8zjDLYyMiIrusb/F6q6ZjhkydPnj59+mq/nZiYiMVisVgMLzYgWyQSqa6uXk+3bpuenu7p6RFCWJZ1ze952mX4/Pnzd9xxx9ve9rYr/nbv3r3vec97du/evXv37rvvvvuDH/xgKBRa4wpRGrJ3z/R4PKkuZAUUFxe///3vf8tb3nLDDTfs2LHj7rvvfuSRRxZIctpl+NVXX1UURVGU+dcPXnzxRftXmzZteuCBB+yf3/a2t5mmmZJSUbrp6enp6OiIxWKpLmT59u/fb3+xt27d+vGPf/yee+6x//Pee+/t6+u74kvSJcPnzp3r7u7+6le/qlwyJ8N9fX3243/3d39nPxKNRnfu3Kkoysc//nHczwUlud1ul8s1NTWV6kKWbGhoyA7trbfeOjw8bD/4i1/8wv7m/+AHP7jiq9Ilw29/+9uVy83J8E9/+lP78dkHFT6fT1GU7du3Z/RfvWjF2dMzr9ZxpS0hhKIod95555x9P7/73e8qivLpT3/6iq9Klwx//etff+qpp5566qmPfexjV8zwY489pijKT3/60zkvtMN/7NixNSwWZQZd19va2iYnJ1NdyGIdO3ZMUZRHH310zuMNDQ2KouzateuKr0qXDCcdPHjwihnevXu3oihut3vO85944glFUf71X/91DWtEGWNmZmbv3r2ZsoAxGAz+wz/8w7//+7/PefyPf/xjBvTDSVfLsKIoW7Zs0TRtzvOffvppRVGeffbZNawRZZhwOHz8+PEM3c66rKzMTsTXv/71Kz7hujI8OTl58uTJkydPer3e0tLSI0eOFBcXt7S0nDhx4uTJk2NjY8t4zwUyvHXr1vkZ/ta3vqUoyl133bX8ZqANYHJysrKyEgCW8cITJ0709fV1dnaWl5fn5OSUlJR0dHT09vaeOnVqVW9YceHChaNHj9pxuPvuu7u6uq74tOVnuKamJi8vr6Kioq2tTdM0XdcNw9A0TVXVQCBQWVlZWFiYl5e31CQvNcPPPPOMoih/+7d/u+yGoI1jcHAwPz9/aGhoMU+Ox+MVFRWHDh06duyY2+0mhBBCKKXBYJAxpqpqeXl5QUFBYWHhaqyIbGpquuuuu7KzsxVFueeee3p7e6/2zCVneHx83Ov1FhcXt7e3G4bBGBNCCCEAAAA455xzxhhjDABcLldlZaXb7V78nKrlZXj+KQRCVzQ5Oen3+3VdX+A5U1NTTqfz6NGjLpeLUso5BwDGGCHE/sLb33Nd1wkhbre7sLCwtbU1eTXoOhFCvva1r9kp2LVr169//euF11ouLcOjo6OvvvqqqqqUUkJIMq6UUvufyR9M0zRN0zAMAOjs7Dx06NDg4OBiln1eLcN33HGHoijz7yv/5JNPKorywgsvLKkhaIM7e/ZsXl7e+fPn5/+qv78/Jyeno6MDZrGTbPdVjDEppf0ltx+0LMvlch0+fPjEiRPXWdipU6fs7/+OHTueeOKJxVzlXkKGOefl5eU+n49SKoSglCY73tk/2A22/8kYsx9UVbWqqmoxN5K+WoYfeeQRRVF+9rOfzXm+PV69jPMctMHF43HDMFpbW2d/04QQBQUFqqpKKQkhye/5nG+4/bNhGPYP9ledMVZcXLxwD7+wsbGxBx98UFGUrKysQCCwyFctNsOmaZaWlmqadvGgQjLDso8wwBKSg06kSkyVAQMmGaMgCGUa5zpwXQoKwCjl1bV1Lk/nwh90tQz/5Cc/sR+ffWLw29/+1h7QwvUPaHn6+/ubmprs4aJQKFRcXMwY48BAMC4YE8AEEM6YAAoMBGOc6KZGjIgpgNMWyYCzCDVVKiSwLiE6Kyoqln3fmWAwaM/xWNIJ9qIyHI/HDxw4YBiGfQgRCoWCRDUsZlrS5IIEVOCEmTozDQ5ccFNIkzIDBAOgAIQxgzHKOYAZKi6tuHDhwgKfdbUMnzhxwj6/f/jhh6enp6enpw8cOGA/8wtf+MLiG4zQfB6P59ChQ3v37rXP/oTkIBgIBsAZAOFM1bRwxAKgBtGI1AC6GSHRWECCyXmISZWBABYV0m+aZl5enmVZyyjjc5/7nKIo7373u48ePfrmPFe7udyiMuxwODo7O+2DCiEEY4ybQE1GiGYxblICTGegU2FwzgWTlEszFJHS5JxxRoEzKQRjnAsR0Iy8vLwFloldLcOJRGLfvn32r7Kzs2+//Xb750cffTSDJuKgtHXgwAF72BkAAJi4mGEGwAjRGSNScik5AIUQJdQCzk1LBZ7MMAALg1A554SQgoKC6enppdawdetW5eo+9alPXfFV185wJBJpaGiYc0pAOTM4iYZNoQcjQJih6kTXiG4YBtVJQONBDVQdAKQUUgpJCQEAwjkFCAaDPp/vah/X0tLy2GOPPfbYY1f8bX5+/mc/+9n77rvvz/7szx588MEnn3xyeVehEZqto6OjpaXFHujRdV0ACAABTACTwASnlgRdCzrb25oaG4831hgGcBBB4tep4NwE0AE4cIsLIqUMBAIul2sZ92R9bEHPPffcFV91jQxPTEy88cYb9qDc7HN6EMIwDJMbUdD++OKv3rJ71+7du2/Zfevu3bfedsvu3bfc+bVvfVcnJuOmFBZnTArBOSeMMQEA4HA4lj0ffWZm5sKFC8PDw7hNKVopxcXFdg9sXzoCAAEgOZfATE4E1Y9VV77j7rt27thx886dN++86Y49e44WFKnAVSoYSAACwDgIdmkcmzFWXl6+NmunFspwPB4XQrS3tyeHmpMYAOcgmRpinf/PD/7PTYpy22177nzrO2699fa33nnnrXvu+tq3v69RE2SYMfjTaB4AEyCl9Pl8ixmjRmgNOJ1O+0t+OSEBTE5NZnA9+L773rUpK+s9777/S1/68kMf+eDmzcqNO3flOupUYdqXZwQQLoghLACQUgKA1+stKytbg/oXyvDExERubq59RXtO+xgXQkgTVGE4H/rI/TffdFOn3/AGqDCjmq4awgowU4OQShgIYYc3OUJAKQ2Hwzk5OWvQPIQWNjMzc+DAAVVVL7saDMBBCAGSU5Np//Gz57Ztyv7Ygx9RVU1IM2QEv/DXn1G2bH/i6e8FrQiT1GQgQedS10XUHjOyp07s3bt3GWfFS7VQhsfHxwsKCuyx6DkZ5mBKaZkQpFrzzhs2f+LPP85FzBDdOjd1pgUY12WYWFaQGMKS9ki9nWF+6QJyfX39arcNoWvq6ekpLS21pxX+KcNCUiGFAAnU5NpDH/tgtqIcPnxQJ4RboQhRDx9+Wdm8/c77/0INx5g0TCYl6FyqquhOvhUhpLy8XEq52k1YKMP2Qmp73tX8DDNhCvB7XJXbt2z6/Oc//5s/vPHDf/mPZ//lJ68feN1L9YDgugQiOQHCgYCgdobtUwUAcDqdzc3Nq908hBYWjUabm5vnHGkSKYkpuQQBVHD15d/9+l9+/E+BQJ3JrwAAABaNSURBVCeVQhMiqge//72vK1tuePRLz7pBMqlb1DK5xs2AKk4m+2HOud/vNwxjtZuwUIbPnDnjdDrnnScAAFAuGEgBwfqaIzdtz87O3qRk79i85dasLduzspX7P/RAW6DTz4khKZOUgQGC2CfRABdPj30+3xtvvLHazUNoYbFYTNO0ORk2hEmk4JIJMICr3OgUoEuL5xbm/eT/+8UXPvWJ7CzlxtvfXtfZ12lGuNBMakquMTOgwYnkVOpwOAwA82f4r7hrZNjj8dizoO3T9FmNNHSuRbnIf+V3N2crWzbv+skvXj9aUv37//3zd25Ttmbd8hePfVm3TtBwRGcGFwSEIYAJAAGmaZpCCFVV33zzzdVuHkILs1cyzBvuCQEQBk7LCkrCIzxi8aAl2//xW3+/WVE2K8oWJev2PfeWN3Pd6IoR3WS00+oOmFYY2ua8VWtr62o34RoZ9nq9yaPfyw42AMLdEaF7XVWO3//yf5WV1vqhW5NRi6l6Xd5tO9+6adudbX5BzIhKDBAEBLmUYWEP3+u6/tJLL6128xBaWCAQmH+qyEASwUBqHHSgwImUwAjxBjVPc0vz0bwDDz/04W2bspTttzYHTc65xXVdmqoMAczt0tdg3OfaGSaEzB/WItwkgnWH/d1GIKyahEDApGb3yQiYlqf8gfd+RNl6Z0OHTq0unTEO9FKGuQBhWRalVFXVvXv3rnbzEFoYANjzK2fTGSVCgAwzMDkHXTd0wmS4S+OmJkBE6Emz5X133aBsUvbWtAZlyIKgAGqICIHInAw7nc7VbsK1z4cNw7CXZcyujIuwzkhEen/9/z73nae/09TUbERIEHiIc8tf+777P5S15c7GdiNIQ0yYABwEE4KJS2NalNJAIPDqq6+udvMQWlgsFvP7/XMybIAmrBAxogJi7R2tO3ftuHn37X41TGSPJkFItZvUf/aj71C2Kq/WNHWGLAlBAZTyKGVdAGCvqLfXM6V4TGtkZKS2ttauJrnK30YBKHDJtG986akbszb/8n/+MsB1ERHA/PUl+3Zsf8vb3vEhlfcEiQUyzPnFDNtjWvZ6LpfLtQanCggtLBqN2kuFL1tCKwKckah1CkjIMDxv2bMrK2vzyy8f1YyIYbJekzeWHNy1TVG23FDU7tFMxoWmi5AOMZPxZIYZY8FgkBCy2k24xhyPgoKCUCgEAHPO+wnXuSlAN19+8T83K8pNN+346rf+e4Hj6HP/9p07bt6Rrdz05a9/H8J9BrMIAwAQl+Z4AICUUlXVurq6Nbj8jdDC+vr68vPzk0eadnclIWABCbGwxUAwz6/+5w83Z2XdsvPOf/q/f1xRVfr8j3/y1h03b9m084lvPuuDkBBBJojX7FFFpIv67NFfxpi9XHfZ6xAXb6EMT01NFRUVRSKR5FL+JGESVQ+avFsP+H/0w2/tvnW3knXD5u3Zyiblhi3bvvj0N91BYkCISRMAgHNxcQnIRaZpFhUVrXbbEFqMffv2Jedp2fOrBNdNICHOQ9wwuc/knu/949c3KVlbN2/JzlZ2Zm+9IfvGp7/xbAvp0yEc5Z0AhsfqVWW4i3bYiwssy1JV9fXXX1+DKdPXWPNg33N9/lxLg6qRqMkImCCkMCg1Ducc+c3vXywsOqqphiFM2RWDkKURA4CLiwfSl47DKTUMo6mpabXbhtBiuFyupqYme+DWPtFjXHLgIDUpVRNUovpiYebztrz00m//83+/+Lvfv9Lp9WlE+s3T1OqJskCIBVQRVqUV4p3J77nP5ysoKFiD+q+R4bGxsZycHHtrksv6YSFBUEL9AqSEiGkChU5KCTHC0uzSBdMlDZCAMBkHY06G7S1LFrm3IEJroKSkRNf1ZIYN6NZFmJpBKlXgEA5FhNCE1Um5aooudyjEZKcJviCYqnXCYqSbeCU3dCkN+afJ0qWlpalft2Tzer3Nzc3JLe8ubgtGOQcqTE2A4DTCOREyaJoWZzEOISoZASJDglA9uZDaTi/n4Ha7cZYlSisej8c+3rRPG6mIETNMTZ2aBuVAiAAgIAMMdM7DHSZwM2ByNxWgQkRwHmUBi2sEhC5M+0y4vb19zVbmLWofD3sTacuypJTJvTlhKeztxew/oEOHDuH2Vyh9xOPxyspKe/WSZVn2pSb7ytD86R/z2aFN5oJSquv6wYMH16z+RWV4YGAgNzfXMAxhL/03zfkztxbGOTdNEwBKSkoAoL6+Hu82itJBS0uLEOL8+fPDw8PFxcWBQMC+EAOzlhAu/N22Q5HcAZNSWlpa2tPTs2ZNWOy+lmfOnHE4HKqqhsPhQCAw5/R4YXYLdV2vrq6mlNpvaLczQ2+Bg9aBnp6empqakydPJh8BAIfDcfFwet68pqshhNj9k/2S6upqj8ezlg1Zwv7SY2NjBw8enD9B/JrszeKLi4tnbysbj8dHR0fz8/PPnTu3Cu1CaCGlpaUXLlyYP0PBsqzDhw/7/X77YDM58WOBr7e9E7V9CF1QUHA9+0svz9Lu83Dq1Kn8/PyGhga76OSaj+RRh/1XV/LUVwhBCGlqaioqKrrabp2qqnZ0dKzUfS4QWsDMzIzT6fT7/Ve8w4PtwoULZWVl9pfc/iYnt9qyv9X2lzz5DeecSymbm5tLSkoWuCvS6lnOPdPq6+tLSko8Ho/dx9p5Tm6al5zvYhiGz+erqKgoLS295nuWlpaePn0aZ26hVTIzMzMwMJCfn7/I53s8ntzcXJfLZd9jyY7r7Nzax9vBYNC+FdEarG24mmXe93BkZKS3t/fw4cP5+fnNzc1er1fXdbtbDgQCLS0tpaWl+/btCwQCiz9UPnXqlMPhyJTbPaMMMjo6Wl1d3d3dvaQLtsPDw4ZhvPHGG4WFhU1NTZ2dnfZ9TqSUHo+ntbU1Nzf3zTffJIQs0Kuvgeu9h/jw8HB7e7u9M2BHR4fT6Wxra2ttbV32zaM0TfP7/SMjI9dZGEKJRGJ0dDQYDM6/1d6SDA4OOp1Ot9ttf7fb29tbW1s7OjoGBgZWqs7rcb0ZXg0zMzMVFRWBQGAx90lE6GoGBgaKiorW/VXMdMyw7cSJE9XV1dd/M0i0AfX29jY0NEQikVQXshbSN8M2r9fb1taGh9ZokSYnJ30+33UePGeWdM9wIpGYmZk5cuQI4B2G0bUQQnJzc9dmpUH6yIAM27q7uxsaGvDQGl3RwMDAsWPHYrFYqgtJgYzJsK29vd3lcuHULpR04cIFp9Pp9XpTXUjKZFiGE4nE2NiYvRYy1YWg1JNSVlRUjI6OprqQVMq8DNuEEG632zTNVBeCUqOrq6ujoyMcDqe6kNTL1AzbVFVta2vD24hvKKOjoy6Xq6OjI9WFpIvMznAikTh37hyl1O12p7oQtBbsCY+pnduYbjI+w7ZIJNLa2hoKhVJdCFotUkqXy4XT6edbJxm2nT9/vri4ONVVoJVXWFiIFyOuZl1lOJFIDA8PBwIBPFlaN5qamoLBIAZ4Aestw7ahoaHa2tqTJ0/iqokMFY/HT5w4UVNTk+pCMsD6zHAikZiamorFYgcOHEh1IWg59u/f39vbu+6XHK2IdZvhJJfL5Xa7JycnU10Iurbx8fHOzk48FVqS9Z/hRCJx/vz5oqIivCCR5k6fPl1RUYFr1JZqQ2Q4kUjE4/FQKFRSUrLB5+Wlp/7+fofD0dXVlepCMtJGybBtcnKyo6MD51qnj5mZGVVVfT4fnvou28bKsG1oaCgvL6+vrw9HrVNoZmYmFou98sorOFRxnTZihm0nTpyor6/HL1BKjIyMVFVVdXd3p7qQ9WDjZjiRSExOTtpTCFJdyAYyPDzs8XhcLhceBK2UDZ1h29TU1N69e/FWjGvg5MmTBQUFG22vnNWGGU4kEomZmRkpZVNTE46srJJTp061trZukI0m1xhm+DKFhYVSSrz+tIKGhoYMw6itrU11IesWZniuoaGhsrIyjPGK8Hq9TqcTp22sKszwlfn9fo/HM/vmtGhJLMtyu91Xu9klWkGY4YXU1dWZponXn5ZkfHzc/nNLdSEbBWb4Gvr6+pxOJ15/WqS2tjbDMAYHB1NdyAaCGV4UxlhnZ2ea3OcuPcVisbq6ur6+vlQXsuFghpfA7XbjqvQreuWVV3Azs1TBDC9NT0+Py+XCVRO26enpjo6OQCAwPT2d6lo2LszwcoRCoYaGhg1+aN3X11dVVbXB/xDSAWZ4mSYmJtra2trb21NdSAqMjIwUFhZ2d3fjnOd0gBm+Lv39/U1NTRvqVNDv9+u6jtfb0gdmeAUAQE1NzfDwcKoLWV1dXV25ubm4pVG6wQyvjMnJSbfb7XQ6U13IqpiennY4HGfOnMGD5zSEGV5Jp0+f9nq962mK0sTEhN/vb2trGx8fT3Ut6MowwyvPNM2cnJxMvxvjzMzM4OBgUVFRqgtB14AZXhVjY2OhUKilpSXVhSxTX19fQ0NDV1cXLqhOf5jhVdTX13f8+HEhRKoLWYLBwUEhROb+7bMBYYZXVzwen5iYyMnJSXUhixIKhSorK3GvnMyCGV4L4+PjwWCwra1tpd5wYGAgHA4DQHd394qMNoVCIb/fL6W8/rdCawwzvKYcDsfp06eXMbt4enr6zJkzmqbt27evqKiopKTE4XBUVlaWlZWVlJQcPHiwpKTkzJkzQ0NDS33n0dFRt9ut6/pSX4jSBGZ4TU1PT/f395eWli7pVfb9ohwOh8/n03Wdcw4AjDHGGL8kGAy6XC6Hw3H8+PHFD0Q1NTW53e51PztlfcMMp0ZHR4ff779w4cLCTxsYGOjs7CwvL/f5fHZu7QDPkXycENLa2nro0KFrDqR1d3fX19f39vauXJtQamCGU6moqGh0dPRqk5/GxsZycnJ8Pp8QYn5uF2CaZkVFRVVV1RU7ZHuMLbNGy9ECMMMpFo1G6+rqTpw4Mefx/v7+wsJCr9drWRaldPEB5pxTShljTU1NZWVlc97W4/F0dHRk+vwTNBtmOC24XC7OeXJD3IGBgby8PE3T7EBKKZfUDwshCCFSyvr6+ubmZvs9Y7FYdXU17tS5/mCG08XU1FR+fr69mWtZWZkdYCGEEOKK58ALYIxFIhFVVWOxWFVVVUdHh8PhwJHn9QoznF4ikUhubm5raytwCRw4pxwMDjoXBgPGABhYjIeooUWjYOjONw8V5Re3BIUVCOknSHvM0Pyyxx6ytsNMCDl8+HBPT0+qW4ZWC2Y4vYyMjBw5coQQAiABBAADYYDQQegMGAPBuMV4OBYRqvvYD7/3jLJpz4c/9ZWgJL5IsId4u3S90+yZ0y2rqtrZ2ZnqlqHVghlOL5qmBYNBQggDwUEAcAAGgoKgAAwAgANwYQp/1cE/7tmUrWy9+//4/De4cKqWrtEBQUO6qc8OMCFECFFQUHDu3LlUNw6tCsxwejly5EggEAAAKoAKYEIwkHafLIALIEJoQmhtTcX33333HkXZlH3r+x77JpEuIkiQThLeo1v++WfITqezoaEh1Y1DqwIznEa6u7vLy8uj0SjnnEpGJacgGQ8BDwluSc4laBb4LeF9/HN/vnnrHX/4+b/etPmGDz/xfa8FTBqgn2UsqlranPGtUChECHE4HLgLx7qEGU4jNTU1Pp/Pnjt5KcMm4yHgEcEtTmhYGoJ5nv/Vj7dvufEzT/9zW33+NmXbez7/A7fZLaWvS5chbmrm3IvJnHPGWGVlJWZ4XcIMp5Ha2lr7khLnnApGBTCQwC3gFjAQnFqglhYeuGHrlne+/7828a7m43uzN+9692d/aMiwJVpNg1gGoTwwJ8AAQCltaGjADK9LmOF0EY/H6+rq7D6Tcw4gAAQACOACOHASMrmh+z78ofdt3aK8VuRROWmqe0m58c73/+WPopJJ060SM0QNU849H7YvNTmdzv7+/lS3Eq08zHC6mJ6erqiogEsLGAQzBZeCcwGGEJqQqq57vva1L2VnKz/99+e8cDIkteZjbyjbd37k0a9phk8LWcBOSqCdYW1+hjnnHR0dOEd6XcIMp4vp6emqqqrk0a+kYclMyZkUmhRBEH7G/R944H1ZWVk7d+zYvHnzJkXZqijKlk3Kpi3K1uyv/PhXIbVHmHC8a+7ETPvg3Ol0rqcNN1ESZjhdxOPx2tpaIYR9SgzcvhR88V/SlMFg4IknnvjkJz/50EMPPfLIJz7+sUd23bFdyd6xeesd9z/4rl/86g3Gw4S6TXlqdoAppaZp2hnG2wKvS5jhNFJdXZ1c4n/FsWUppf1bzjqB9VQ25Chbbv7zh/82IL0GP60ZQloBMLrmvFYIYRhGU1MTjmmtS5jhNFJbW+t0Og3DMAxj/jmtaZp2vyqlFKYm4ERVQ56SfePDjz6pWQEqTkVivQZ1SbhsrqW9DjESiRQXF2OG1yXMcBo5c+ZMWVmZYRj2ioU5UUwuY6KUMh4MWb3HWx1K9vZH/uopGtEpOwEyzEWA6KE5r9U0jTFWXV2NGV6XMMPpJScnxx6CuuK4FADYXTQHHSDCQwECISJixNQMFgNhMR6QIjY//83Nzbhl9HqFGU4vkUiks7Nz1lViuMriYQLcYlJlICmEqCSMhwAAhA7cSr4quQixsLBwqZUMDg7m5+c/8cQTn/nMZ5588km3233N3b9QSmCG08vIyMjBgweT6b366n8GXHIwOAgGkgnKQQJwEBS4mN11Sym9Xm8wGFxSGa+99tpb3vIW5XL33Xff/D2DUMphhtNOR0eHPWHLPgy+Sob/dJQNwC/9MCvijNmvDQaD+fn5AwMDiy8gGo3ecsstiqLce++9zz333P79+7/85S/bjyiKktwwCKUJzHA6qq2tdbvd9i48V9uP9uJyYmAXf7i0wJhzlrwQZRhGWVnZUqdY5ufnK4py5513zh4DO3jwoJ1hv9+/0s1F1wUznI7OnTuXl5dnLyS+coa5AGAAUgAVQAQACAOAAQgAamcYAOrq6lpbW5f66V/96lcVRfm3f/u32Q/G43E7w/n5+SvXULQCMMNpamBg4OjRo16vFy5N8CCE2Hmec/U4edRt72Kb3Enr2LFj1dXVy/jo73//+w8//PD+/ftnPyiltDOsadrKtBCtEMxw+hofH6+urm5ubrYnb1FKhRCqqtoXiu0A2z8Eg0H77NcwDCFEIBAoLS01DGOlLgj39/e/613vsjO8jJtFoVWFGU5rk5OTXq/X4XB0dHTYMQYAe8LWbBcvGnOu63p9fX1xcfGKbGR54cKF+++//8Ybb7TTu2PHjtOnT1//26KVhRnODJWVlbm5ue3t7YQQVVUJIckrwHaAVVUtLS0tKChYwTGn4eHhT3/60/fcc8/u3bvtGN98883LuLUiWlWY4Yxx9uzZvr6+ioqKo0ePHjlyxL6DaX5+/uHDh/ft2+f3+0+fPr0i9yKebXJycmJiIhKJPP/883aMn3/++ZX9CHSdMMOZKh6PT01NrcY7j42NXfGGTN/4xjcURXn88cdX40PRsmGG0WXOnj1r97ft7e1zfmVfIv7ABz6QksLQ1WCG0WXGxsbsDL/44otzfvXss88qivLkk0+mpDB0NZhhNNdHP/pRRVEeeuih5OB2PB53OBx2tn/3u9+ltjw0B2YYzeV0Ojdt2qQoys6dO9/3vvd98YtfvO222zZv3ozzpdMTZhhdwb59+/bs2TNn3dI3v/lNvGlTGsIMoyuLx+OU0pdffvn5559/7bXXzp8/n+qK0JVhhhHKbJhhhDIbZhihzIYZRiizYYYRymz/PzyqrSROHnP7AAAAAElFTkSuQmCC" alt="" />

距离为 2 的有序点对有(1,3),(2,4),(3,1),(3,5),(4,2),(5,3)。其联合权值分别为 2,15,2,20,15,20。其中最大的是 20,总和为 74。

对于30%的数据,1<n≤100;

对于60%的数据,1<n≤2000;

对于100%的数据,1<n≤200000,0<Wi≤10000。

保证一定存在可产生联合权值的有序点对。

/*
刚开始用的三重循环,华丽丽的TLE了,70分 (⊙o⊙) !!!
正解:枚举每个点,这个点所连接的任意两点的距离为2,把它们都放到一个数组里,取最大的两个数相乘即为当前最优解,对于所有点取大;至于权值和,补充一个数学知识:
(a+b+c)^2=a*a+b*b+c*c+2ab+2ac+2bc, 2ab+2ac+2bc即为当前和,对于所有点取和。
*/
#include<cstdio>
#include<iostream>
#include<vector>
#include<algorithm>
#include<cstring>
#define M 200010
using namespace std;
vector<int> grap[M];
int n,a[M],q[M];
int cmp(const int x,const int y)
{
return a[x]>a[y];
}
int main()
{
scanf("%d",&n);
for(int i=;i<n;i++)
{
int x,y;
scanf("%d%d",&x,&y);
grap[x].push_back(y);
grap[y].push_back(x);
}
for(int i=;i<=n;i++)
scanf("%d",&a[i]);
int sum=,maxn=;
for(int i=;i<=n;i++)
{
int cnt=,x=,y=;
if(grap[i].size()>)
{
for(int j=;j<grap[i].size();j++)
{
q[++cnt]=grap[i][j];
x+=a[grap[i][j]];x%=;
y+=a[grap[i][j]]*a[grap[i][j]];y%=;
}
sort(q+,q+cnt+,cmp);
maxn=max(maxn,a[q[]]*a[q[]]);
sum+=x*x-y;
sum=(sum+)%;
}
}
printf("%d %d",maxn,sum);
return ;
}

联合权值(codevs 3728)的更多相关文章

  1. Codevs 3728 联合权值

    问题描述 无向连通图G有n个点,n-1条边.点从1到n依次编号,编号为i的点的权值为Wi ,每 条边的长度均为1.图上两点(u,v)的距离定义为u点到v点的最短距离.对于图G上的点 对(u,v),若它 ...

  2. 「NOIP2014」「Codevs3728」 联合权值(乱搞

    3728 联合权值 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 黄金 Gold   题目描述 Description 输入描述 Input Description 输出描述 Ou ...

  3. codevs3728联合权值(LCA)

    3728 联合权值  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 黄金 Gold 题解  查看运行结果     题目描述 Description 输入描述 Input Des ...

  4. NOIP2014联合权值

    无向连通图G有n个点,n-1条边.点从1到n依次编号,编号为i的点的权值为Wi  ,每条边的长度均为1.图上两点(u, v)的距离定义为u点到v点的最短距离.对于图G上的点对(u, v),若它们的距离 ...

  5. P1906联合权值

    描述 无向连通图 G 有 n 个点,n-1 条边.点从 1 到 n 依次编号,编号为 i 的点的权值为 WiWi, 每条边的长度均为 1.图上两点(u, v)的距离定义为 u 点到 v 点的最短距离. ...

  6. [NOIP2014] 提高组 洛谷P1351 联合权值

    题目描述 无向连通图G 有n 个点,n - 1 条边.点从1 到n 依次编号,编号为 i 的点的权值为W i ,每条边的长度均为1 .图上两点( u , v ) 的距离定义为u 点到v 点的最短距离. ...

  7. NOIp 2014 #2 联合权值 Label:图论 !!!未AC

    题目描述 无向连通图G 有n 个点,n - 1 条边.点从1 到n 依次编号,编号为 i 的点的权值为W i ,每条边的长度均为1 .图上两点( u , v ) 的距离定义为u 点到v 点的最短距离. ...

  8. 【洛谷P1351】联合权值

    我们枚举中间点,当连的点数不小于2时进行处理 最大值好搞 求和:设中间点 i 所连所有点权之和为sum 则对于每个中间点i的联合权值之和为: w[j]*(sum-w[j])之和 #include< ...

  9. Noip2014 提高组 T2 联合权值 连通图+技巧

    联合权值 描述 无向连通图 G 有 n 个点,n-1 条边.点从 1 到 n 依次编号,编号为 i 的点的权值为 WiWi, 每条边的长度均为 1.图上两点(u, v)的距离定义为 u 点到 v 点的 ...

随机推荐

  1. npm install -g cnpm --registry=https://registry.npm.taobao.org

    npm install -g cnpm --registry=https://registry.npm.taobao.org

  2. iOS打包上传app store各种问题解决总结

    问题1 this action could not be completed. try again 问题2 there was an error sending data to the iTunes ...

  3. 在Solr中配置中文分词IKAnalyzer

    李克华 云计算高级群: 292870151 交流:Hadoop.NoSQL.分布式.lucene.solr.nutch 在Solr中配置中文分词IKAnalyzer 1.在配置文件schema.xml ...

  4. layui模块规范

    刚入公司不久,就开始做项目了,最后还是选择用layui来做前端的页面,一来是可以自适应,二来是用框架比较方便,简洁. 先看下Layui的介绍: layui 是一款采用自身模块规范编写的情怀级前端UI框 ...

  5. 高精度A+B

    #include<stdio.h> #include<string.h> int main() { int lenth1,lenth2,n,i,j,k,s; scanf(&qu ...

  6. Base64编码密钥时关于换行的几个问题。

    在windows下一个javaweb应用,需要用http传递公钥pk.一般是String pk = BASE64ENCODER.encode(pkBytes);base64编码时,每76个字母就要换行 ...

  7. Windows10+anaconda,python3.5, 安装glove-python

    Windows10+anaconda,python3.5, 安装glove-python安装glove安装之前 Visual C++ 2015 Build Tools开始安装安装glove最近因为一个 ...

  8. django(django框架了解,http协议)

    Django框架 学习目的: 完成web应用的编写 django的作用: 0.业务逻辑分发(路由分发) 1.业务逻辑实现: 业务逻辑根据分发来完成具体的事,再根据具体事的需求,和页面或数据库交互,返回 ...

  9. subprocess模块windows系统命令和linux系统命令

    windows系统 查看所有进程 tasklist 查找指定进程 tasklist | findstr pycharm 程序名称 PID(大写) 数量 大小 python exe 2640 conso ...

  10. LeetCode(150) Evaluate Reverse Polish Notation

    题目 Evaluate the value of an arithmetic expression in Reverse Polish Notation. Valid operators are +, ...