题目要求的是:

\[...a(a(a(ax+b)+b)+b)+b...=a^nx+a^{n-1}b+a^{n-2}b+...+b\equiv t(mod\ p)
\]

后面这一大坨看着不舒服,所以考虑把它化掉,这里有两种做法:

做法一:两边同乘a-1

\[(a^{n-1}x)(a-1)+b(a^{n-1}-1)\equiv t(a-1)(mod\ p)
\]

\[a^nx-a^{n-1}x+ba^{n-1}-b \equiv at-t(mod\ p)
\]

\[axa^{n-1}-xa^{a-1}+ba^{n-1} \equiv at-t+b(mod\ p)
\]

\[(ax-x+b)a^{n-1} \equiv at-t+b(mod\ p)
\]

\[a^{n-1}\equiv (at-t+b)inv(ax-x+b)(mod\ p)
\]

注意这个很容易乘爆,记得随时取模

做法二:后面乘上a-1的逆元

\[a^{n-1}x+b(a^{n-1}-1)inv(a-1)\equiv t(mod\ p)
\]

\[a^{n-1}x+b*a^{n-1}*inv(a-1)-b*inv(a-1)\equiv t(mod\ p)
\]

\[a^{n-1}x+b*a^{n-1}*inv(a-1)\equiv t+b*inv(a-1)(mod\ p)
\]

\[a^{n-1}(b*inv(a-1)+x)\equiv t+b*inv(a-1)(mod\ p)
\]

\[a^{n-1}\equiv (t+b*inv(a-1))inv(b*inv(a-1)+x)(mod\ p)
\]

然后用BSGS解即可,记得加一

#include<iostream>
#include<cstdio>
#include<map>
#include<cmath>
using namespace std;
long long T,p,a,b,x,t,y,z;
map<long long,long long>mp;
long long ksm(long long a,long long b)
{
long long r=1ll;
a%=p;
while(b)
{
if(b&1)
r=r*a%p;
a=a*a%p;
b>>=1;
}
return r;
}
int main()
{
scanf("%lld",&T);
while(T--)
{
scanf("%lld%lld%lld%lld%lld",&p,&a,&b,&x,&t);
if(x==t)
{
puts("1");
continue;
}
if(a==0)
{
if(b==t)
puts("2");
else
puts("-1");
continue;
}
if(a==1&&b==0)
{
puts("-1");
continue;
}
if(a==1)
{
long long now=ksm(b,p-2);
printf("%lld\n",(((t-x)%p+p)%p*now%p+p)%p+1);
continue;
}
y=a,z=((a*t%p-t+b)%p*ksm(a*x-x+b,p-2)%p+p)%p;
//y=a,z=((t+b*ksm(a-1,p-2)%p)%p*ksm((x%p+b*ksm(a-1,p-2)%p)%p,p-2))%p;//(a*t-t+b)*ksm(a*x-x+b,p-2);做法二
y%=p;
if(!y&&!z)
{
puts("1");
continue;
}
if(!y)
{
puts("-1");
continue;
}
mp.clear();
long long m=ceil(sqrt(p)),t=1;
mp[1]=m+1;
for(long long i=1;i<m;i++)
{
t=t*y%p;
if(!mp[t])
mp[t]=i;
}
long long tmp=ksm(y,p-m-1),now=1,f=0;
for(long long k=0;k<m;k++)
{
long long i=mp[z*now%p];
if(i)
{
if(i==m+1)
i=0;
printf("%lld\n",k*m+i+1);
f=1;
break;
}
now=now*tmp%p;
}
if(!f)
puts("-1");
}
return 0;
}

bzoj 3122: [Sdoi2013]随机数生成器【BSGS】的更多相关文章

  1. bzoj 3122 : [Sdoi2013]随机数生成器 BSGS

    BSGS算法 转自:http://blog.csdn.net/clove_unique 问题 给定a,b,p,求最小的非负整数x,满足$a^x≡b(mod \ p)$ 题解 这就是经典的BSGS算法, ...

  2. Bzoj 3122 [Sdoi2013]随机数生成器(BSGS+exgcd)

    Input 输入含有多组数据,第一行一个正整数T,表示这个测试点内的数据组数. 接下来T行,每行有五个整数p,a,b,X1,t,表示一组数据.保证X1和t都是合法的页码. 注意:P一定为质数 Outp ...

  3. bzoj 3122 [Sdoi2013]随机数生成器(逆元,BSGS)

    Description Input 输入含有多组数据,第一行一个正整数T,表示这个测试点内的数据组数.    接下来T行,每行有五个整数p,a,b,X1,t,表示一组数据.保证X1和t都是合法的页码. ...

  4. bzoj 3122: [Sdoi2013]随机数生成器

    #include<cstdio> #include<iostream> #include<map> #include<cmath> #define ll ...

  5. 【BZOJ 3122】 [Sdoi2013]随机数生成器 (BSGS)

    3122: [Sdoi2013]随机数生成器 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 1442  Solved: 552 Description ...

  6. 【BZOJ3122】[Sdoi2013]随机数生成器 BSGS+exgcd+特判

    [BZOJ3122][Sdoi2013]随机数生成器 Description Input 输入含有多组数据,第一行一个正整数T,表示这个测试点内的数据组数.   接下来T行,每行有五个整数p,a,b, ...

  7. BZOJ3122: [Sdoi2013]随机数生成器(BSGS)

    题意 题目链接 Sol 这题也比较休闲. 直接把\(X_{i+1} = (aX_i + b) \pmod P\)展开,推到最后会得到这么个玩意儿 \[ a^{i-1} (x_1 + \frac{b}{ ...

  8. 【bzoj3122】[Sdoi2013]随机数生成器 BSGS思想的利用

    题目描述 给出递推公式 $x_{i+1}=(ax_i+b)\mod p$ 中的 $p$.$a$.$b$.$x_1$ ,其中 $p$ 是质数.输入 $t$ ,求最小的 $n$ ,使得 $x_n=t$ . ...

  9. [bzoj3122][SDOI2013]随机数生成器 ——BSGS,数列

    题目大意 给定递推序列: F[i] = a*F[i-1] + b (mod c) 求一个最小的i使得F[i] == t 题解 我们首先要化简这个数列,作为一个学渣,我查阅了一些资料: http://d ...

随机推荐

  1. Object_C 定义全局宏的颜色时,报“Expected identifier”的错误

    在定义全局颜色宏的时候,为了整齐把空格删了,写在了同一行里,调用的时候,出错提示“Expected identifier”,如下: 如果宏定义如上那样的话,在调用的时候,会出现如下的问题: 百思不得解 ...

  2. POJ 1144 割点

    题意 :求割点的数量 #include<iostream> #include<stdio.h> #include<vector> #include<strin ...

  3. Android 学习路线图(转载自https://blog.csdn.net/lixuce1234/article/details/77947405)

    程序设计 一.java (a)基本语法(如继承.异常.引用.泛型等) Java核心技术 卷I(适合入门) 进阶 Effective Java中文版(如何写好的Java代码) Java解惑 (介绍烂Ja ...

  4. easyui英文提示变中文

    近期玩JQuery easyUI,系统默认的日期和文本输入框提示英文.作为一个地道的中国人,是不是提示成中文.日期也显示成中文,是不是更人性化呢,下面为操作方法哦. 更改前效果 1 输入框提示为英文 ...

  5. POJ3264Balanced Lineup(最基础的线段树)

    採用一维数组建树. (由于一维数组建的是全然二叉树,时间上比用孩子节点指针建树慢.只是基本能够忽略=-=) #include<iostream> #include<cstdio> ...

  6. hdu1507——Uncle Tom&#39;s Inherited Land*

    Uncle Tom's Inherited Land* Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (J ...

  7. udhcp源码详解(一)之文件组织结构(dhcp server) --转

    udhcp目录下有十几个源文件,一个源文件相对应一个模块,完成一系列相关的功能,例如在static_leases.c主要针对static_lease链表增删查找等操作. dhcpd.c——   整个d ...

  8. linux中用anaconda使用不同版本python

    1.使用命令conda create --name python36 python=3.6  #你想使用哪个版本就下载哪个版本,--name后面跟的是该虚拟环境的名称 2.需要使用python3.6时 ...

  9. Servlet的引入

    一.分析 此模式有问题: 1.jsp需要呼叫javabean StudentService stuService = new StudentServiceImpl(); List<Student ...

  10. 用bis和bic实现位级操作

    20世纪70年代末至80年代末,DigitalEquipment的VAX计算机是一种非常流行的机型.它没有布尔运算AND和OR指令,仅仅有bis(位设置)和bic(位清除)这两种指令.两种指令的输入都 ...