背景

神仙飞啊飞

描述

从前有个人名叫W and N and B,他有着天才般的记忆力,他珍藏了许多许多的宝藏。在他离世之后留给后人一个难题(专门考验记忆力的啊!),如果谁能轻松回答出这个问题,便可以继承他的宝藏。题目是这样的:给你一大串数字(编号为1到N,大小可不一定哦!),在你看过一遍之后,它便消失在你面前,随后问题就出现了,给你M个询问,每次询问就给你两个数字A,B,要求你瞬间就说出属于A到B这段区间内的最大数。一天,一位美丽的姐姐从天上飞过,看到这个问题,感到很有意思(主要是据说那个宝藏里面藏着一种美容水,喝了可以让这美丽的姐姐更加迷人),于是她就竭尽全力想解决这个问题。BUT,她每次都以失败告终,因为这数字的个数是在太多了!于是她请天才的你帮他解决。如果你帮她解决了这个问题,可是会得到很多甜头的哦!

格式

输入格式

一个整数N表示数字的个数,接下来一行为N个数。第三行读入一个M,表示你看完那串数后需要被提问的次数,接下来M行,每行都有两个整数A,B。

输出格式

输出共M行,每行输出一个数。

样例1

样例输入1

6
34 1 8 123 3 2
4
1 2
1 5
3 4
2 3

样例输出1

34
123
123
8

提示

对于30%的数据,1<=N<=10000,1<=M<=100
对于100%的数据,1<=N<=200000,1<=M<=10000.

思路

st表;

f[i][j]表示从i开始,包含1<<j个元素的区间的区间最大值;

转移方程:f[i][j]=max_(f[i][j-1],f[i+(1<<j-1)][j-1];

查询(l,r):

p=log2(r-l+1);

max(l,r)=max_(f[l][p],f[r-(1<<p)+1][p]);

代码实现

 #include<cmath>
#include<cstdio>
const int maxn=2e5+;
inline int max_(int x,int y){return x>y?x:y;}
int n,m,l,a,b;
int f[maxn][];
int main(){
scanf("%d",&n);
for(int i=;i<=n;i<<=) l++;
for(int i=;i<=n;i++) scanf("%d",&f[i][]);
for(int i=;i<l;i++) for(int j=;j<=n;j++)
if(j+(<<i-)<=n) f[j][i]=max_(f[j][i-],f[j+(<<i-)][i-]);
else f[j][i]=f[j][i-];
scanf("%d",&m);
for(int i=;i<=m;i++){
scanf("%d%d",&a,&b);
l=log2(b-a+);
printf("%d\n",max_(f[a][l],f[b-(<<l)+][l]));
}
return ;
}

[Vijos] 天才的记忆的更多相关文章

  1. vijos1514天才的记忆

    P1514天才的记忆 背景 神仙飞啊飞 描述 从前有个人名叫W and N and B,他有着天才般的记忆力,他珍藏了许多许多的宝藏.在他离世之后留给后人一个难题(专门考验记忆力的啊!),如果谁能轻松 ...

  2. 【vijos】P1514天才的记忆

    描述 从前有个人名叫W and N and B,他有着天才般的记忆力,他珍藏了许多许多的宝藏.在他离世之后留给后人一个难题(专门考验记忆力的啊!),如果谁能轻松回答出这个问题,便可以继承他的宝藏.题目 ...

  3. [vijos]P1514 天才的记忆

    背景 神仙飞啊飞 描述 从前有个人名叫W and N and B,他有着天才般的记忆力,他珍藏了许多许多的宝藏.在他离世之后留给后人一个难题(专门考验记忆力的啊!),如果谁能轻松回答出这个问题,便可以 ...

  4. 天才的记忆(vijos 1514)

    描述 从前有个人名叫W and N and B,他有着天才般的记忆力,他珍藏了许多许多的宝藏.在他离世之后留给后人一个难题(专门考验记忆力的啊!),如果谁能轻松回答出这个问题,便可以继承他的宝藏.题目 ...

  5. AcWing 1273. 天才的记忆

    从前有个人名叫 WNB,他有着天才般的记忆力,他珍藏了许多许多的宝藏. 在他离世之后留给后人一个难题(专门考验记忆力的啊!),如果谁能轻松回答出这个问题,便可以继承他的宝藏. 题目是这样的:给你一大串 ...

  6. OI 刷题记录——每周更新

    每周日更新 2016.05.29 UVa中国麻将(Chinese Mahjong,Uva 11210) UVa新汉诺塔问题(A Different Task,Uva 10795) NOIP2012同余 ...

  7. loj题目总览

    --DavidJing提供技术支持 现将今年7月份之前必须刷完的题目列举 完成度[23/34] [178/250] 第 1 章 贪心算法 √ [11/11] #10000 「一本通 1.1 例 1」活 ...

  8. 2019寒假练题计划——LibreOJ刷题计划 &《信息学奥赛一本通》提高版题目

    目录 2019.1.27 #10082. 「一本通 3.3 例 1」Word Rings 题意 思路 #10083. 「一本通 3.3 例 2」双调路径 题意 思路 #10084. 「一本通 3.3 ...

  9. CSU训练分类

    √√第一部分 基础算法(#10023 除外) 第 1 章 贪心算法 √√#10000 「一本通 1.1 例 1」活动安排 √√#10001 「一本通 1.1 例 2」种树 √√#10002 「一本通 ...

随机推荐

  1. Java GUI 基础组件

    1.JLabel  标签 构造函数: JLabel() JLabel(String text) JLabel(String text,int align)     //第二个参数设置文本的对齐方式,常 ...

  2. jQuery选择器之可见性选择器

    <!DOCTYPE html> <html> <head> <meta http-equiv="Content-type" content ...

  3. mysql出错排查

    1,例如:Can't connect to local MySQL server through socket '/tmp/mysql-5.5.37.sock' (2) Mysql链接出错,请配置/A ...

  4. vue+element ui项目总结点(一)select、Cascader级联选择器、encodeURI、decodeURI转码解码、mockjs用法、路由懒加载三种方式

    不多说上代码: <template> <div class="hello"> <h1>{{ msg }}</h1> <p> ...

  5. [译] 用win7自带工具找出svchost.exe的CPU使用率达到100%的元凶

    本文是我对自己上一篇转载的博客 <Figuring out why my SVCHOST.EXE is at 100% CPU without complicated tools in Wind ...

  6. 如何用sql server数据库恢复.bak数据库备份

    @hcy(黄灿奕) 之前有两次都恢复不了,折腾了很长时间,这一次碰到这样的问题,居然又忘了,又捣鼓了很长时间,现在记下来 1.右击SQL Server 2008实例下的“数据库”文件夹.就是与安全性. ...

  7. hdu 5402 Travelling Salesman Problem (技巧,未写完)

    题意:给一个n*m的矩阵,每个格子中有一个数字,每个格子仅可以走一次,问从(1,1)走到(n,m) 的路径点权之和. 思路: 想了挺久,就是有个问题不能短时间证明,所以不敢下手. 显然只要n和m其中一 ...

  8. SQLite概述

    SQLite概述 这个教程帮助您理解SQLite是什么,它如何不同于SQL,为什么它是必要的和它的方式处理应用程序数据库.   SQLite是一个库,实现了一个独立的软件,serverless zer ...

  9. Java面试题之HashSet 的实现原理?

    HashSet 的实现原理?首先,我们需要知道它是Set的一个实现,所以保证了当中没有重复的元素.一方面Set中最重要的一个操作就是查找.而且通常我们会选择 HashSet来实现,因为它专门对快速查找 ...

  10. react中的jsx详细理解

    这是官网上的一个简单的例子 const name = 'Josh Perez'; const element = <h1>Hello, {name}</h1>; ReactDO ...