luogu 2257 YY的GCD
题目描述:
给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少对。
题解:
代码:
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
#define N 10000500
#define ll long long
int pri[N/],cnt,mu[N];
ll f[N],F[N];
bool vis[N];
void get_mu()
{
mu[]=;
for(int i=;i<=;i++)
{
if(!vis[i])
{
pri[++cnt] = i;
mu[i]=-;
}
for(int j=;j<=cnt&&1ll*pri[j]*i<=10000000ll;j++)
{
vis[pri[j]*i]=;
if(i%pri[j])mu[i*pri[j]]=-mu[i];
else
{
mu[i*pri[j]]=;
break;
}
}
}
for(int i=;i<=cnt;i++)
{
for(int j=;j*pri[i]<=;j++)
{
f[j*pri[i]]+=mu[j];
}
}
for(int i=;i<=;i++)
F[i]=F[i-]+f[i];
}
int T,n,m;
int main()
{
get_mu();
scanf("%d",&T);
while(T--)
{
scanf("%d%d",&n,&m);
ll ans = ;
int nxt = ;
for(int i=;i<=n&&i<=m;i=nxt+)
{
nxt = min(n/(n/i),m/(m/i));
ans+=(F[nxt]-F[i-])*(n/i)*(m/i);
}
printf("%lld\n",ans);
}
return ;
}
luogu 2257 YY的GCD的更多相关文章
- BZOJ 2820 luogu 2257 yy的gcd (莫比乌斯反演)
题目大意:求$gcd(i,j)==k,i\in[1,n],j\in[1,m] ,k\in prime,n,m<=10^{7}$的有序数对个数,不超过10^{4}次询问 莫比乌斯反演入门题 为方便 ...
- [Luogu P2257] YY的GCD (莫比乌斯函数)
题面 传送门:洛咕 Solution 推到自闭,我好菜啊 显然,这题让我们求: \(\large \sum_{i=1}^{n}\sum_{j=1}^{m}[gcd(i,j)\in prime]\) 根 ...
- Luogu P2257 YY的GCD
莫比乌斯反演第一题.莫比乌斯反演入门 数论题不多BB,直接推导吧. 首先,发现题目所求\(ans=\sum_{i=1}^n\sum_{j=1}^m [\gcd(i,j)=prime]\) 考虑反演,我 ...
- 【题解】Luogu P2257 YY的GCD
原题传送门 这题需要运用莫比乌斯反演(懵逼钨丝繁衍) 显然题目的答案就是\[ Ans=\sum_{i=1}^N\sum_{j=1}^M[gcd(i,j)=prime]\] 我们先设设F(n)表示满足\ ...
- 解题:洛谷2257 YY的GCD
题面 初见莫比乌斯反演 有一个套路是关于GCD的反演经常设$f(d)=\sum_{gcd(i,j)==d},g(d)=\sum_{d|gcd(i,j)}$,然后推推推 $\sum\limits_{i= ...
- Luogu P2257 YY的GCD 莫比乌斯反演
第一道莫比乌斯反演...$qwq$ 设$f(d)=\sum_{i=1}^n\sum_{j=1}^m[gcd(i,j)==d]$ $F(n)=\sum_{n|d}f(d)=\lfloor \frac{N ...
- [洛谷2257]YY的GCD 题解
整理题目转化为数学语言 题目要我们求: \[\sum_{i=1}^n\sum_{i=1}^m[gcd(i,j)=p]\] 其中 \[p\in\text{质数集合}\] 这样表示显然不是很好,所以我们需 ...
- 洛谷 2257 - YY的GCD
莫比乌斯反演半模板题 很容易可以得到 \[Ans = \sum\limits_{p \in prime} \sum\limits_{d = 1}^{\min (\left\lfloor\frac{a} ...
- BZOJ 2820: YY的GCD [莫比乌斯反演]【学习笔记】
2820: YY的GCD Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 1624 Solved: 853[Submit][Status][Discu ...
随机推荐
- POJ3682;King Arthur's Birthday Celebration(期望)
传送门 题意 进行翻硬币实验,若k次向上则结束,进行第n次实验需花费2*n-1的费用,询问期望结束次数及期望结束费用 分析 我们令f[i]为结束概率 \[f[i]=C_{i-1}^{k-1}*p^k* ...
- bzoj 3598: [Scoi2014]方伯伯的商场之旅【数位dp】
参考了这个http://www.cnblogs.com/Artanis/p/3751644.html,好像比一般方法好写 大概思想就是先计算出把所有石子都合并到1位置的代价,这样显然有一些是不优的,然 ...
- Web Scraping with R: How to Fill Missing Value (爬虫:如何处理缺失值)
网络上有大量的信息与数据.我们可以利用爬虫技术来获取这些巨大的数据资源. 这次用 IMDb 网站的2018年100部最欢迎的电影 来练练手,顺便总结一下 R 爬虫的方法. >> Prepa ...
- X86 Linux 下 SIGBUS 总结
SIGBUS 在 x86 Linux 上并不多见,但一旦出现,其调用堆栈常常让人摸不着头脑,加之信号问题各平台系统间差异较大,更让人难以理清,这里稍微总结一下 x86 Linux 上大概有哪些情形会触 ...
- GDI+ 加载PNG图片
#include <GdiPlus.h>#pragma comment(lib, "GdiPlus.lib")using namespace Gdiplus; clas ...
- Boost1.6x+win7+VC2015编译
下载 通过boost官方网站, 或直接在source forge下载boost_1_6x_0. 可选包 Zlib library, 环境变量: ZLIB_SOURCE bzip2, 环境变量: BZI ...
- jmeter(五)集合点
集合点: 简单来理解一下,虽然我们的“性能测试”理解为“多用户并发测试”,但真正的并发是不存在的,为了更真实的实现并发这感念,我们可以在需要压力的地方设置集合点,每到输入用户名和密码登录时,所有的虚拟 ...
- 169 Majority Element 求众数 数组中出现次数超过一半的数字
给定一个大小为 n 的数组,找到其中的众数.众数是指在数组中出现次数大于 ⌊ n/2 ⌋ 的元素.你可以假设数组是非空的,并且数组中的众数永远存在. 详见:https://leetcode.com/p ...
- Coprime Conundrum 容斥原理
https://www.hackerrank.com/contests/hourrank-13/challenges/arthur-and-coprimes 我们可以枚举每一个p在[2, sqrt(n ...
- android开发学习——Socket发送和接收
client -- server发送过程中,涉及的输入流输出流: http://blog.csdn.net/dlwh_123/article/details/35982015 (良心好文) 需 ...