线段树+离散化 POJ 2528 Mayor's posters
题意:在一面墙上贴海报,有先后顺序,问最后有多少张不同的海报(指的是没被覆盖或者只是部分覆盖的海报)
分析:这题数据范围很大,直接搞超时+超内存,需要离散化:离散化简单的来说就是只取我们需要的值来用,比如说区间[1000,2000],[1990,2012] 我们用不到[-∞,999][1001,1989][1991,1999][2001,2011][2013,+∞]这些值,所以我只需要1000,1990,2000,2012就够了,将其分别映射到0,1,2,3,在于复杂度就大大的降下来了所以离散化要保存所有需要用到的值,排序后,分别映射到1~n,这样复杂度就会小很多很多。而这题的难点在于每个数字其实表示的是一个单位长度(并非一个点),这样普通的离散化会造成许多错误(包括我以前的代码,poj这题数据奇弱)。给出下面两个简单的例子应该能体现普通离散化的缺陷:
例子一:1-10 1-4 5-10
例子二:1-10 1-4 6-10
普通离散化后都变成了[1,4][1,2][3,4]
配上图(例子一):
为了解决这种缺陷,我们可以在排序后的数组上加些处理,比如说[1,2,6,10]
如果相邻数字间距大于1的话,在其中加上任意一个数字,比如加成[1,2,3,6,7,10],然后再做线段树就好了。 --copy from Notonlysuccess
收获:离散化技巧
代码:
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std; #define lson l, mid, rt << 1
#define rson mid + 1, r, rt << 1 | 1
const int N = 1e4 + 10;
const int INF = 0x3f3f3f3f;
int ans;
struct ST {
int col[N<<4];
bool vis[N];
void init(void) {
memset (col, -1, sizeof (col));
memset (vis, false, sizeof (vis));
}
void push_down(int rt) {
if (col[rt] != -1) {
col[rt<<1] = col[rt<<1|1] = col[rt];
col[rt] = -1;
}
}
void updata(int ql, int qr, int c, int l, int r, int rt) {
if (ql <= l && r <= qr) {
col[rt] = c; return ;
}
push_down (rt);
int mid = (l + r) >> 1;
if (ql <= mid) updata (ql, qr, c, lson);
if (qr > mid) updata (ql, qr, c, rson);
}
void query(int l, int r, int rt) {
if (col[rt] != -1) {
if (!vis[col[rt]]) {
ans++; vis[col[rt]] = true;
}
return ;
}
if (l == r) return ;
int mid = (l + r) >> 1;
query (lson);
query (rson);
}
}st;
int L[N], R[N];
int X[N<<2]; int main() {
int T, n; scanf("%d",&T);
while (T --) {
scanf("%d",&n);
int tot = 0;
for (int i=0; i<n; ++i) {
scanf ("%d%d", &L[i], &R[i]);
X[tot++] = L[i];
X[tot++] = R[i];
}
sort (X, X+tot);
int k = 1;
for (int i=1; i<tot; ++i) {
if (X[i] != X[i-1]) X[k++] = X[i];
}
for (int i=k-1; i>=1; --i) {
if (X[i] != X[i-1] + 1) X[k++] = X[i-1] + 1;
}
sort(X, X+k); st.init ();
for (int i=0; i<n; ++i) {
int ql = lower_bound (X, X+k, L[i]) - X;
int qr = lower_bound (X, X+k, R[i]) - X;
st.updata (ql, qr, i, 0, k, 1);
}
ans = 0;
st.query(0, k, 1);
printf("%d\n", ans);
} return 0;
}
线段树+离散化 POJ 2528 Mayor's posters的更多相关文章
- poj 2528 Mayor's posters(线段树+离散化)
/* poj 2528 Mayor's posters 线段树 + 离散化 离散化的理解: 给你一系列的正整数, 例如 1, 4 , 100, 1000000000, 如果利用线段树求解的话,很明显 ...
- poj 2528 Mayor's posters 线段树+离散化技巧
poj 2528 Mayor's posters 题目链接: http://poj.org/problem?id=2528 思路: 线段树+离散化技巧(这里的离散化需要注意一下啊,题目数据弱看不出来) ...
- POJ.2528 Mayor's posters (线段树 区间更新 区间查询 离散化)
POJ.2528 Mayor's posters (线段树 区间更新 区间查询 离散化) 题意分析 贴海报,新的海报能覆盖在旧的海报上面,最后贴完了,求问能看见几张海报. 最多有10000张海报,海报 ...
- POJ - 2528 Mayor's posters(dfs+分治)
POJ - 2528 Mayor's posters 思路:分治思想. 代码: #include<iostream> #include<cstdio> #include< ...
- POJ 2528 Mayor's posters 【区间离散化+线段树区间更新&&查询变形】
任意门:http://poj.org/problem?id=2528 Mayor's posters Time Limit: 1000MS Memory Limit: 65536K Total S ...
- POJ 2528 Mayor's posters(线段树+离散化)
Mayor's posters 转载自:http://blog.csdn.net/winddreams/article/details/38443761 [题目链接]Mayor's posters [ ...
- POJ 2528 - Mayor's posters - [离散化+区间修改线段树]
题目链接:http://poj.org/problem?id=2528 Time Limit: 1000MS Memory Limit: 65536K Description The citizens ...
- poj 2528 Mayor's posters 线段树+离散化 || hihocode #1079 离散化
Mayor's posters Description The citizens of Bytetown, AB, could not stand that the candidates in the ...
- POJ 2528 Mayor's posters(线段树区间染色+离散化或倒序更新)
Mayor's posters Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 59239 Accepted: 17157 ...
随机推荐
- HDOJ1006
#include <cstdio>#include <algorithm>using namespace std;const double UB=43200;const dou ...
- c++string 输入换行符
string 一次只能输入一行,不含换行符.可以自己添加换行符 和输入行数.例如:#include <iostream>#include <string>using names ...
- 2016/05/25 PHP mysql_insert_id() 函数 返回上一步 INSERT 操作产生的 ID
定义和用法 mysql_insert_id() 函数返回上一步 INSERT 操作产生的 ID. 如果上一查询没有产生 AUTO_INCREMENT 的 ID,则 mysql_insert_id() ...
- HashMap随机取值和迭代器取值的对比
一共四中方法,前两种是迭代器取值,后两种是随机取值,循环了5000万次,时间分别为:迭代器读取的速度大约是随机读取的速度的1.5倍,数据量越大,差距越明显. 另外,插入是读取的100倍左右的时间(这个 ...
- LeetCode之16----3Sums Closest
题目: Given an array S of n integers, find three integers in S such that the sum is closest to a given ...
- React通用后台管理系统
react-admin 部分采用了antd,相关功能较全,添加了较多的组件模块.star 664 GitHub:https://github.com/yezihaohao/react-admin 在线 ...
- myeclipse -vmargs -Xmx512m -XX:MaxPermSize=256m -XX:ReservedCodeCacheSize=64m
myeclipse.ini把里面的参数为 -vmargs -Xmx512m -XX:MaxPermSize=256m -XX:ReservedCodeCacheSize=64m 以对于我而言,我只要把 ...
- 关于encodeURIComponent的用法
定义和用法 encodeURIComponent() 函数可把字符串作为 URI 组件进行编码. 语法 encodeURIComponent(URIstring) 参数 描述 URIstring ...
- 西门子PLC存储器、地址区
S7-1500 CPU的存储器 1.内部集成的存储器:工作存储器,保持性存储器,系统存储器 2.外插的SIMATIC存储卡:装载存储器去 装载存储器:断电信息不丢失,主要存储项目中程序块,数据块,工艺 ...
- NSError分析
在iOS开发中,NSError的使用非常常见,使用也比较简单,也正因为简单,所以对这一部分知识不甚注重.但是近期在做app底层网络封装时发现了一些问题.我使用的网络框架是AFNetworking,AF ...