698C
Description
n个视频,长度为k的缓存,每次询问,每个视频以pi的概率被选,如果不在缓存区则加入,如果缓存区满了,则最先进缓存的出来,问10^100次操作以后每个视频在缓存的概率
Input
第一行两个整数n和k,第二行n个数表示每个视频被选中的概率
(1<=k<=n<=20,0<=pi<=1,sum(pi)=1)
Output
输出10^100次操作后每个视频在缓存中出现的概率
Sample Input
3 1
0.3 0.2 0.5
Sample Output
0.3 0.2 0.5
10^100次方说明这个缓存肯定是填满了,那么也就是说只有最后几个操作可以影响到缓存中存在东西的概率 那么问题就转化成了装满缓存后每个物品存在的概率 就是说只要我加满了k 就停止。那么这个东西我们可以装压dp dp[i]表示i集合出现的概率。那么怎么转移呢?dp[i | 1 << j] = dp[i] * p[j] / sum (sum = sigma(p[k]), k不属于i, j属于i) 为什么呢 因为如果缓存中已经存在了某些东西,那么我们加进去是无效的,又因为我们加了很多次,那么这些无效的操作可以忽视(不是很懂,自己yy的)所以我们要除去选中缓存中已有物品的概率,剩下的概率就是从没选中的东西中选j的概率。那么这个dp就很好理解了。统计答案时如果这个集合的元素个数=k那么每个元素出现的概率加上这个dp值 还需要注意几点,1.sum不能很小; 2.如果p=0 那么这个物品肯定不会选中,所以我们先统计一下p不等于0的元素,和k比较一下谁更小,更小的作为k。
想想这还是我第一次打cf的题目呢,当时觉得这是什么东西,现在好像有了一些的进步。
#include<bits/stdc++.h>
using namespace std;
const int N = ;
const double eps = 1e-;
int n, k, all;
double dp[ << N], p[N], ans[N];
inline double getsum(int x)
{
double ret = ;
for(int i = ; i < n; ++i) if(x & ( << i)) ret += p[i];
return - ret;
}
int main()
{
scanf("%d%d", &n, &k); all = << n; int m = ;
for(int i = ; i < n; ++i)
{
scanf("%lf", &p[i]);
if(fabs(p[i]) > eps) ++m;
}
k = min(k, m);
dp[] = ;
for(int i = ; i < all; ++i)
{
double sum = getsum(i);
for(int j = ; j < n; ++j) if(!(i & ( << j)))
dp[i | ( << j)] += dp[i] * p[j] / sum;
}
for(int i = ; i < all; ++i) if(__builtin_popcount(i) == k)
for(int j = ; j < n; ++j) if(i & ( << j)) ans[j] += dp[i];
for(int i = ; i < n; ++i) printf("%.7f ", ans[i]);
return ;
}
698C的更多相关文章
- CodeForces 698C LRU
吐槽一句:这数据造得真强-. 题意:有一个大小为k的缓存区,每次从n种物品中按照一定的概率选取一种物品尝试放进去.同一个物品每一次选取的概率都是相同的.如果这种物品已经放进去过就不再放进去.如果缓存区 ...
- ●CodeForces 698C LRU
题链: http://codeforces.com/problemset/problem/698/C题解.1: 概率dp,状压dp 棒棒哒题解:https://www.cnblogs.com/liu- ...
- 【codeforces 698C】LRU
题目链接: http://codeforces.com/problemset/problem/698/C 题目大意: n个物品,k个格子,第i个物品每次被选取的概率为$p_{i}$,如果格子里没有该物 ...
- gerrit配置和使用
参考http://www.cnblogs.com/tesky0125/p/5973642.html 1.安装gerrit replication插件 mkdir ~/tmp cp gerrit-2.1 ...
随机推荐
- LINUX:Contos7.0 / 7.2 LAMP+R 下载安装Apache篇
文章来源:http://www.cnblogs.com/hello-tl/p/7568803.html 更新时间:2017-09-21 15:38 简介 LAMP+R指Linux+Apache+Mys ...
- [学习资料] Tiny210(S5PV210) u-boot移植
Tiny210(S5PV210) u-boot移植http://www.microoh.com/bbs/forum.php?mod=viewthread&tid=254&fromuid ...
- Python之爬虫-京东商品
Python之爬虫-京东商品 #!/usr/bin/env python # coding: utf-8 from selenium import webdriver from selenium.we ...
- UVA 213 信息解码(二进制&位运算)
题意: 出自刘汝佳算法竞赛入门经典第四章. 考虑下面的01串序列: 0, 00, 01, 10, 000, 001, 010, 011, 100, 101, 110, 0000, 0001, …, 1 ...
- Unity3D 固定功能函数
Unity 3D 测试固定功能函数执行顺序 1. 在GameObject和脚本激活状态下,测试: 2. 在GameObject激活状态下,测试: 3. 在2种情况都不激活的状态下测试:脚本无输出: 函 ...
- json数据的格式,JavaScript、jQuery读取json数据
JSON:JavaScript 对象表示法(JavaScript Object Notation). JSON的特点: JSON 是纯文本 JSON 具有“自我描述性”(人类可读) JSON 具有层级 ...
- Leetcode 187.重复的DNA序列
重复的DNA序列 所有 DNA 由一系列缩写为 A,C,G 和 T 的核苷酸组成,例如:"ACGAATTCCG".在研究 DNA 时,识别 DNA 中的重复序列有时会对研究非常有帮 ...
- 【NOIP2017练习】鏖战字符串(斜率优化DP)
题意: 在决胜局中,Abwad决定和nbc鏖战字符串,比的是谁能更快地将一个“量子态的字符串”删除.“量子态的字符串”的每个字符都有一个删除难度dif[i].“量子态的字符串”非常顽固,只能先分割成若 ...
- 【51NOD1766】树上的最远点对(线段树,LCA,RMQ)
题意:n个点被n-1条边连接成了一颗树,给出a~b和c~d两个区间, 表示点的标号请你求出两个区间内各选一点之间的最大距离,即你需要求出max{dis(i,j) |a<=i<=b,c< ...
- hdu - 1195 Open the Lock (bfs) && hdu 1973 Prime Path (bfs)
http://acm.hdu.edu.cn/showproblem.php?pid=1195 这道题虽然只是从四个数到四个数,但是状态很多,开始一直不知道怎么下手,关键就是如何划分这些状态,确保每一个 ...