都是取的模板,这几天做的素数题挺多的,所以整理了放在这里,感觉有一天回用到的!

SPOJ:Nth Prime:     求第N个素数,N<1e9。

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N=,P=,Q=;
struct getnthprime
{
int prime[N+],pi[N+],e[P];
void init(){
for(int i=;i<=N;i++) {
if(!prime[i]) prime[++prime[]]=i,pi[i]=pi[i-]+;
else pi[i]=pi[i-];
for(int j=;j<=prime[]&&i<=N/prime[j];j++) {
prime[i*prime[j]]=;
if(i%prime[j]==) break;
}
}
for(int i=;i<P;i++) e[i]=i;
for(int i=;i<=;i++) {
for(int j=P-;j>=;j--)
e[j]-=e[j/prime[i]];
}
}
ll get_phi(ll m,int n) {
if (n==) return m/P*Q+e[m%P];
if (m<prime[n]) return ;
if (m<=N&&m<=(ll)prime[n]*prime[n]*prime[n]) {
ll ans=pi[m]-n+;
for(int i=n+,l=pi[(int)sqrt(m+0.1)];i<=l;i++)
ans+=pi[m/prime[i]]-i+;
return ans;
}
return get_phi(m,n-)-get_phi(m/prime[n],n-);
} ll get_pi(ll m){
if(m<=N) return pi[m];
int n=pi[(int)cbrt(m-0.1)+];
ll ans=get_phi(m,n)+n-;
for(int i=n+,l=pi[(int)sqrt(m+0.1)];i<=l;i++)
ans-=get_pi(m/prime[i])-i+;
return ans;
} bool f[];
ll get_pn(ll n) {
if (n<=prime[]) return prime[n];
ll x=n*(log(n)+log(log(n))-)+n*(log(log(n))-)/log(n)-*n/;
ll y=n*(log(log(n)))*(log(log(n)))/log(n)/log(n);
y=min(y,ll());
ll l=x,r=x+y,flag = ;
for (int i=;i<;i++) {
ll m=(l+r)>> ;
ll pm=get_pi(m);
if(pm>=n) r=m,flag=;
else l=m+,flag=pm;
}
ll count=flag?flag:get_pi(l-);
for(int i=,li=pi[(int)sqrt(r+0.1)];i<=li;i++) {
for(int j=((l-)/prime[i]+)*prime[i]-l;j<=r-l+;
j+=prime[i]){
f[j]=true;
}
}
for(int i=;i<=r-l+;i++) {
if(!f[i]){
count++;
if(count==n) return i+l;
}
}
return -;
}
}NP; int main() {
NP.init();
ll n; scanf("%lld",&n);
cout<<NP.get_pn(n)<<endl;
return ;
}

HDU5901:Count primes:    求1到N有多少个素数。N<1e11。

#include<bits/stdc++.h>
using namespace std;
#define ll long long
const int N=5e6+,M=,PM=******;
struct countprimes
{
bool np[N],did[N];
int prime[N],pi[N],phi[PM+][M+],sz[M+];
vector<ll>v;
int getprime()
{
int cnt=;
np[]=np[]=true;
pi[]=pi[]=;
for(int i=;i<N;++i){
if(!np[i]) prime[++cnt]=i; pi[i]=cnt;
for(int j=;j<=cnt&&i*prime[j]<N;++j){
np[i*prime[j]]=true;
if(i%prime[j]==) break;
}
} return cnt;
}
void init()
{
getprime();
sz[]=;
for(int i=;i<=PM;++i) phi[i][]=i;
for(int i=;i<=M;++i){
sz[i]=prime[i]*sz[i-];
for(int j=;j<=PM;++j) phi[j][i]=phi[j][i-]-phi[j/prime[i]][i-];
}
}
int sqrt2(ll x)
{
ll r=(ll)sqrt(x-0.1);
while(r*r<=x) ++r;
return int(r-);
}
int sqrt3(ll x)
{
ll r=(ll)cbrt(x-0.1);//开三次方
while(r*r*r<=x) ++r;
return int(r-);
}
ll getphi(ll x,int s)
{
if(s==) return x;
if(s<=M) return phi[x%sz[s]][s]+(x/sz[s])*phi[sz[s]][s];
if(x<=prime[s]*prime[s]) return pi[x]-s+;
if(x<=prime[s]*prime[s]*prime[s]&&x<N)
{
int s2x=pi[sqrt2(x)];
ll ans=pi[x]-(s2x+s-)*(s2x-s+)/;
for(int i=s+;i<=s2x;++i) ans+=pi[x/prime[i]];
return ans;
}
return getphi(x,s-)-getphi(x/prime[s],s-);
}
ll getpi(ll x)
{
if(x<N) return pi[x];
ll ans=getphi(x,pi[sqrt3(x)])+pi[sqrt3(x)]-;
for(int i=pi[sqrt3(x)]+,ed=pi[sqrt2(x)];i<=ed;++i) ans-=getpi(x/prime[i])-i+;
return ans;
}
ll lehmer_pi(ll x)
{
if(x<N) return pi[x];
int a=(int)lehmer_pi(sqrt2(sqrt2(x)));
int b=(int)lehmer_pi(sqrt2(x));
int c=(int)lehmer_pi(sqrt3(x));
ll sum=getphi(x,a)+(ll)(b+a-)*(b-a+)/;
for(int i=a+;i<=b;i++)
{
ll w=x/prime[i];
sum-=lehmer_pi(w);
if(i>c) continue;
ll lim=lehmer_pi(sqrt2(w));
for(int j=i;j<=lim;j++) sum-=lehmer_pi(w/prime[j])-(j-);
}
return sum;
}
}CP;
int main()
{
CP.init();
ll n,ans=;
while(~scanf("%lld",&n)){
cout<<CP.lehmer_pi(n)<<endl;
}
}

Nth prime & numbers of primes (模板)的更多相关文章

  1. HDU 2138 How many prime numbers(Miller_Rabin法判断素数 【*模板】 用到了快速幂算法 )

    How many prime numbers Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/O ...

  2. algorithm@ Sieve of Eratosthenes (素数筛选算法) & Related Problem (Return two prime numbers )

    Sieve of Eratosthenes (素数筛选算法) Given a number n, print all primes smaller than or equal to n. It is ...

  3. Codeforces 385C Bear and Prime Numbers

    题目链接:Codeforces 385C Bear and Prime Numbers 这题告诉我仅仅有询问没有更新通常是不用线段树的.或者说还有比线段树更简单的方法. 用一个sum数组记录前n项和, ...

  4. CodeForces - 385C Bear and Prime Numbers (埃氏筛的美妙用法)

    Recently, the bear started studying data structures and faced the following problem. You are given a ...

  5. 快速切题 sgu113 Nearly prime numbers 难度:0

    113. Nearly prime numbers time limit per test: 0.25 sec. memory limit per test: 4096 KB Nearly prime ...

  6. [Algorithm] Finding Prime numbers - Sieve of Eratosthenes

    Given a number N, the output should be the all the prime numbers which is less than N. The solution ...

  7. POJ 2739. Sum of Consecutive Prime Numbers

    Sum of Consecutive Prime Numbers Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 20050 ...

  8. POJ 2739 Sum of Consecutive Prime Numbers(尺取法)

    题目链接: 传送门 Sum of Consecutive Prime Numbers Time Limit: 1000MS     Memory Limit: 65536K Description S ...

  9. HDOJ(HDU) 2138 How many prime numbers(素数-快速筛选没用上、)

    Problem Description Give you a lot of positive integers, just to find out how many prime numbers the ...

随机推荐

  1. NIO与传统IO的区别(形象比喻)[转]

    传统的socket IO中,需要为每个连接创建一个线程,当并发的连接数量非常巨大时,线程所占用的栈内存和CPU线程切换的开销将非常巨大.使用NIO,不再需要为每个线程创建单独的线程,可以用一个含有限数 ...

  2. Google的JSON风格指南

    官网:https://google.github.io/styleguide/jsoncstyleguide.xml 中文版:https://github.com/darcyliu/google-st ...

  3. Windows下使用Nexus搭建Maven私服(使用)

    注意: 1.从3.0版本的Nexus开始,已经不再缓存https://repo1.maven.org/maven2/的包,所以当安装好之后,在界面上不会有任何的包可以搜索到,但是功能是一切正常的,只有 ...

  4. java文本文件加密解密类

    原文:http://www.open-open.com/code/view/1420031154765 import java.awt.*; import java.awt.event.*; impo ...

  5. 深入理解javascript之设计模式

    设计模式 设计模式是命名.抽象和识别对可重用的面向对象设计实用的的通用设计结构. 设计模式确定类和他们的实体.他们的角色和协作.还有他们的责任分配. 每个设计模式都聚焦于一个面向对象的设计难题或问题. ...

  6. android官方Api 理解Activity生命周期的回调机制(适合有基础的人看)

    原文地址:http://www.android-doc.com/training/basics/activity-lifecycle/starting.html#lifecycle-states 此处 ...

  7. Regularized least-squares classification(正则化最小二乘法分类器)取代SVM

    在机器学习或者是模式识别其中有一种重要的分类器叫做:SVM .这个被广泛的应用于各个领域.可是其计算的复杂度以及训练的速度是制约其在实时的计算机应用的主要原因.因此也非常非常多的算法被提出来.如SMO ...

  8. 课程的正确步调——Leo鉴书74

    <Leo鉴书(第1辑)>已登陆百度阅读.今后还将不断更新,免费下载地址:http://t.cn/RvawZEx 本人第一次站上讲台是1999年,那会儿从中关村回到天津,在一个给成人做计算机 ...

  9. AnimalWindow使用,实现界面动态消失

    http://m.blog.csdn.net/blog/shufac/24932279 http://blog.sina.com.cn/s/blog_455245fc01000a42.html Ani ...

  10. css设置背景图片自适应

      CreateTime--2017年12月25日16:36:07 Author:Marydon 控制背景图片100%自适应填充布局 /* 控制背景图片100%自适应填充布局 */ body{ bac ...