都是取的模板,这几天做的素数题挺多的,所以整理了放在这里,感觉有一天回用到的!

SPOJ:Nth Prime:     求第N个素数,N<1e9。

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N=,P=,Q=;
struct getnthprime
{
int prime[N+],pi[N+],e[P];
void init(){
for(int i=;i<=N;i++) {
if(!prime[i]) prime[++prime[]]=i,pi[i]=pi[i-]+;
else pi[i]=pi[i-];
for(int j=;j<=prime[]&&i<=N/prime[j];j++) {
prime[i*prime[j]]=;
if(i%prime[j]==) break;
}
}
for(int i=;i<P;i++) e[i]=i;
for(int i=;i<=;i++) {
for(int j=P-;j>=;j--)
e[j]-=e[j/prime[i]];
}
}
ll get_phi(ll m,int n) {
if (n==) return m/P*Q+e[m%P];
if (m<prime[n]) return ;
if (m<=N&&m<=(ll)prime[n]*prime[n]*prime[n]) {
ll ans=pi[m]-n+;
for(int i=n+,l=pi[(int)sqrt(m+0.1)];i<=l;i++)
ans+=pi[m/prime[i]]-i+;
return ans;
}
return get_phi(m,n-)-get_phi(m/prime[n],n-);
} ll get_pi(ll m){
if(m<=N) return pi[m];
int n=pi[(int)cbrt(m-0.1)+];
ll ans=get_phi(m,n)+n-;
for(int i=n+,l=pi[(int)sqrt(m+0.1)];i<=l;i++)
ans-=get_pi(m/prime[i])-i+;
return ans;
} bool f[];
ll get_pn(ll n) {
if (n<=prime[]) return prime[n];
ll x=n*(log(n)+log(log(n))-)+n*(log(log(n))-)/log(n)-*n/;
ll y=n*(log(log(n)))*(log(log(n)))/log(n)/log(n);
y=min(y,ll());
ll l=x,r=x+y,flag = ;
for (int i=;i<;i++) {
ll m=(l+r)>> ;
ll pm=get_pi(m);
if(pm>=n) r=m,flag=;
else l=m+,flag=pm;
}
ll count=flag?flag:get_pi(l-);
for(int i=,li=pi[(int)sqrt(r+0.1)];i<=li;i++) {
for(int j=((l-)/prime[i]+)*prime[i]-l;j<=r-l+;
j+=prime[i]){
f[j]=true;
}
}
for(int i=;i<=r-l+;i++) {
if(!f[i]){
count++;
if(count==n) return i+l;
}
}
return -;
}
}NP; int main() {
NP.init();
ll n; scanf("%lld",&n);
cout<<NP.get_pn(n)<<endl;
return ;
}

HDU5901:Count primes:    求1到N有多少个素数。N<1e11。

#include<bits/stdc++.h>
using namespace std;
#define ll long long
const int N=5e6+,M=,PM=******;
struct countprimes
{
bool np[N],did[N];
int prime[N],pi[N],phi[PM+][M+],sz[M+];
vector<ll>v;
int getprime()
{
int cnt=;
np[]=np[]=true;
pi[]=pi[]=;
for(int i=;i<N;++i){
if(!np[i]) prime[++cnt]=i; pi[i]=cnt;
for(int j=;j<=cnt&&i*prime[j]<N;++j){
np[i*prime[j]]=true;
if(i%prime[j]==) break;
}
} return cnt;
}
void init()
{
getprime();
sz[]=;
for(int i=;i<=PM;++i) phi[i][]=i;
for(int i=;i<=M;++i){
sz[i]=prime[i]*sz[i-];
for(int j=;j<=PM;++j) phi[j][i]=phi[j][i-]-phi[j/prime[i]][i-];
}
}
int sqrt2(ll x)
{
ll r=(ll)sqrt(x-0.1);
while(r*r<=x) ++r;
return int(r-);
}
int sqrt3(ll x)
{
ll r=(ll)cbrt(x-0.1);//开三次方
while(r*r*r<=x) ++r;
return int(r-);
}
ll getphi(ll x,int s)
{
if(s==) return x;
if(s<=M) return phi[x%sz[s]][s]+(x/sz[s])*phi[sz[s]][s];
if(x<=prime[s]*prime[s]) return pi[x]-s+;
if(x<=prime[s]*prime[s]*prime[s]&&x<N)
{
int s2x=pi[sqrt2(x)];
ll ans=pi[x]-(s2x+s-)*(s2x-s+)/;
for(int i=s+;i<=s2x;++i) ans+=pi[x/prime[i]];
return ans;
}
return getphi(x,s-)-getphi(x/prime[s],s-);
}
ll getpi(ll x)
{
if(x<N) return pi[x];
ll ans=getphi(x,pi[sqrt3(x)])+pi[sqrt3(x)]-;
for(int i=pi[sqrt3(x)]+,ed=pi[sqrt2(x)];i<=ed;++i) ans-=getpi(x/prime[i])-i+;
return ans;
}
ll lehmer_pi(ll x)
{
if(x<N) return pi[x];
int a=(int)lehmer_pi(sqrt2(sqrt2(x)));
int b=(int)lehmer_pi(sqrt2(x));
int c=(int)lehmer_pi(sqrt3(x));
ll sum=getphi(x,a)+(ll)(b+a-)*(b-a+)/;
for(int i=a+;i<=b;i++)
{
ll w=x/prime[i];
sum-=lehmer_pi(w);
if(i>c) continue;
ll lim=lehmer_pi(sqrt2(w));
for(int j=i;j<=lim;j++) sum-=lehmer_pi(w/prime[j])-(j-);
}
return sum;
}
}CP;
int main()
{
CP.init();
ll n,ans=;
while(~scanf("%lld",&n)){
cout<<CP.lehmer_pi(n)<<endl;
}
}

Nth prime & numbers of primes (模板)的更多相关文章

  1. HDU 2138 How many prime numbers(Miller_Rabin法判断素数 【*模板】 用到了快速幂算法 )

    How many prime numbers Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/O ...

  2. algorithm@ Sieve of Eratosthenes (素数筛选算法) & Related Problem (Return two prime numbers )

    Sieve of Eratosthenes (素数筛选算法) Given a number n, print all primes smaller than or equal to n. It is ...

  3. Codeforces 385C Bear and Prime Numbers

    题目链接:Codeforces 385C Bear and Prime Numbers 这题告诉我仅仅有询问没有更新通常是不用线段树的.或者说还有比线段树更简单的方法. 用一个sum数组记录前n项和, ...

  4. CodeForces - 385C Bear and Prime Numbers (埃氏筛的美妙用法)

    Recently, the bear started studying data structures and faced the following problem. You are given a ...

  5. 快速切题 sgu113 Nearly prime numbers 难度:0

    113. Nearly prime numbers time limit per test: 0.25 sec. memory limit per test: 4096 KB Nearly prime ...

  6. [Algorithm] Finding Prime numbers - Sieve of Eratosthenes

    Given a number N, the output should be the all the prime numbers which is less than N. The solution ...

  7. POJ 2739. Sum of Consecutive Prime Numbers

    Sum of Consecutive Prime Numbers Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 20050 ...

  8. POJ 2739 Sum of Consecutive Prime Numbers(尺取法)

    题目链接: 传送门 Sum of Consecutive Prime Numbers Time Limit: 1000MS     Memory Limit: 65536K Description S ...

  9. HDOJ(HDU) 2138 How many prime numbers(素数-快速筛选没用上、)

    Problem Description Give you a lot of positive integers, just to find out how many prime numbers the ...

随机推荐

  1. Linux,以逗号为分隔符,打印文件file.txt中的第一个和第三个字符

    https://zhidao.baidu.com/question/1883257355267391828.html

  2. 设计模式之装饰(Decorator)模式

    设计模式之装饰(Decorator)模式 (一)什么是装饰(Decorator)模式 装饰模式,又称为包装模式,它以对客户端透明的方式扩张对象的功能,是继承关系的替代方案之一. 装饰模式可以在不使用创 ...

  3. mysql 5.7版本目录无data文件夹的解决办法

    安装mysql 5.7+版本时,若发现因根目录下,缺少data文件夹的情况, ***请不要去拷贝其他版本的data文件夹!*** 因为此操作会出现很多潜在问题:比如我遇到的执行show variabl ...

  4. spring security原理图及其解释

    用户发出订单修改页面的请求,Access Decision Manager进行拦截,然后对比用户的授权和次页面需要的授权是不是有重合的部分,如果有重合的部分,那面页面就授权成功,如果失败就通知用户. ...

  5. Android应用开发 WebView与服务器端的Js交互

    最近公司再添加功能的时候,有一部分功能是用的html,在一个浏览器或webview中展示出html即可.当然在这里我们当然用webview控件喽 WebApp的好处: 在应用里嵌套web的好处有这么几 ...

  6. leetCode 65.Valid Number (有效数字)

    Valid Number  Validate if a given string is numeric. Some examples: "0" => true " ...

  7. BeagleBone Black Industrial 进阶设置(性能优化以及延长板载eMMC存储寿命)

    前言 原创文章,转载引用务必注明链接.水平有限,欢迎指正. 本文使用markdown写成,为获得更好的阅读体验,推荐访问我的博客原文: http://www.omoikane.cn/2016/09/1 ...

  8. groovy入门 第05章 基本输入输出

    基本输入输出 5.1基本输出 print XXX    //同一行输出 println XXX //换行输出 输出字符串: def message ="My name is Michael& ...

  9. 2.6.2 用NPOI操作EXCEL--设置密码才可以修改单元格内容

    2.6.2 用NPOI操作EXCEL--设置密码       有时,我们可能需要某些单元格只读,如在做模板时,模板中的数据是不能随意让别人改的.在Excel中,可以通过“审阅->保护工作表”来完 ...

  10. 中科燕园GIS外包---交通运输综合地理信息平台

      集地图.服务.应用于一身交通运输综合性的GIS门户   交通运输综合地理信息平台,是集地图.服务.应用于一身交通运输综合性的GIS门户.无需复杂的设置和部署,就可以高速创建交互式地图和应用程序,并 ...