codeforces 696C C. PLEASE(概率+快速幂)
题目链接:
1 second
256 megabytes
standard input
standard output
As we all know Barney's job is "PLEASE" and he has not much to do at work. That's why he started playing "cups and key". In this game there are three identical cups arranged in a line from left to right. Initially key to Barney's heart is under the middle cup.
Then at one turn Barney swaps the cup in the middle with any of other two cups randomly (he choses each with equal probability), so the chosen cup becomes the middle one. Game lasts n turns and Barney independently choses a cup to swap with the middle one within each turn, and the key always remains in the cup it was at the start.
After n-th turn Barney asks a girl to guess which cup contains the key. The girl points to the middle one but Barney was distracted while making turns and doesn't know if the key is under the middle cup. That's why he asked you to tell him the probability that girl guessed right.
Number n of game turns can be extremely large, that's why Barney did not give it to you. Instead he gave you an array a1, a2, ..., aksuch that
in other words, n is multiplication of all elements of the given array.
Because of precision difficulties, Barney asked you to tell him the answer as an irreducible fraction. In other words you need to find it as a fraction p / q such that , where is the greatest common divisor. Since p and q can be extremely large, you only need to find the remainders of dividing each of them by 10^9 + 7.
Please note that we want of p and q to be 1, not of their remainders after dividing by 109 + 7.
The first line of input contains a single integer k (1 ≤ k ≤ 10^5) — the number of elements in array Barney gave you.
The second line contains k integers a1, a2, ..., ak (1 ≤ ai ≤ 10^18) — the elements of the array.
In the only line of output print a single string x / y where x is the remainder of dividing p by 109 + 7 and y is the remainder of dividing qby 109 + 7.
1
2
1/2
3
1 1 1
0/1 题意: 三个杯子,物品一开始在中间的杯子里,在n此交换后,问物品在中间的杯子里的概率; 思路: 可以先求出概率的表达式,可以得到一个表达式2*dp[n]+dp[n-1]=1;最后就是一个等比数列的和dp[n]=(2^(n-1)+(-1)^n)/(3*2^(n-1));
再看一下分子是否是3的倍数;然后就是快速幂对这个式子求结果了,中间要用费马小定理哟; AC代码:
#include <bits/stdc++.h>
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath> using namespace std; #define For(i,j,n) for(int i=j;i<=n;i++)
#define mst(ss,b) memset(ss,b,sizeof(ss)); typedef long long LL; template<class T> void read(T&num) {
char CH; bool F=false;
for(CH=getchar();CH<'0'||CH>'9';F= CH=='-',CH=getchar());
for(num=0;CH>='0'&&CH<='9';num=num*10+CH-'0',CH=getchar());
F && (num=-num);
}
int stk[70], tp;
template<class T> inline void print(T p) {
if(!p) { puts("0"); return; }
while(p) stk[++ tp] = p%10, p/=10;
while(tp) putchar(stk[tp--] + '0');
putchar('\n');
} const LL mod=1e9+7;
const double PI=acos(-1.0);
const LL inf=1e18;
const int N=3e6+10;
const int maxn=3e6;
const double eps=1e-10; int n;
LL a[N]; LL pow_mod(LL x,LL y,LL mod)
{
LL s=1,base=x;
while(y)
{
if(y&1)s=s*base%mod;
base=base*base%mod;
y>>=1;
}
return s;
} int main()
{
read(n);
For(i,1,n)read(a[i]);
LL temp=1;
For(i,1,n)temp=a[i]%2*temp%2;
int flag=0;
if((pow_mod(2,(temp+1)%2,3)+pow_mod(-1,temp,3))%3==0)flag=1;
LL p=1,q=1;
temp=1;
For(i,1,n)temp=a[i]%(mod-1)*temp%(mod-1);
p=pow_mod(2,(temp-1+mod-1)%(mod-1),mod)+pow_mod(-1,temp,mod);
if(flag)p=pow_mod(3,mod-2,mod)*p%mod;
q=pow_mod(2,(temp-1+mod-1)%(mod-1),mod);
if(!flag)q=3*q%mod;
cout<<p<<"/"<<q<<endl;
return 0;
}
codeforces 696C C. PLEASE(概率+快速幂)的更多相关文章
- codeforces magic five --快速幂模
题目链接:http://codeforces.com/contest/327/problem/C 首先先算出一个周期里面的值,保存在ans里面,就是平常的快速幂模m做法. 然后要计算一个公式,比如有k ...
- CodeForces - 691E Xor-sequences 【矩阵快速幂】
题目链接 http://codeforces.com/problemset/problem/691/E 题意 给出一个长度为n的序列,从其中选择k个数 组成长度为k的序列,因为(k 有可能 > ...
- Codeforces 963 A. Alternating Sum(快速幂,逆元)
Codeforces 963 A. Alternating Sum 题目大意:给出一组长度为n+1且元素为1或者-1的数组S(0~n),数组每k个元素为一周期,保证n+1可以被k整除.给a和b,求对1 ...
- Codeforces 691E题解 DP+矩阵快速幂
题面 传送门:http://codeforces.com/problemset/problem/691/E E. Xor-sequences time limit per test3 seconds ...
- 【codeforces 623E】dp+FFT+快速幂
题目大意:用$[1,2^k-1]$之间的证书构造一个长度为$n$的序列$a_i$,令$b_i=a_1\ or\ a_2\ or\ ...\ or a_i$,问使得b序列严格递增的方案数,答案对$10^ ...
- Codeforces 691E Xor-sequences(矩阵快速幂)
You are given n integers a1, a2, ..., an. A sequence of integers x1, x2, ..., xk is called a & ...
- Codeforces 954 dijsktra 离散化矩阵快速幂DP 前缀和二分check
A B C D 给你一个联通图 给定S,T 要求你加一条边使得ST的最短距离不会减少 问你有多少种方法 因为N<=1000 所以N^2枚举边数 迪杰斯特拉两次 求出Sdis 和 Tdis 如果d ...
- Codeforces 1067D - Computer Game(矩阵快速幂+斜率优化)
Codeforces 题面传送门 & 洛谷题面传送门 好题. 首先显然我们如果在某一次游戏中升级,那么在接下来的游戏中我们一定会一直打 \(b_jp_j\) 最大的游戏 \(j\),因为这样得 ...
- Codeforces 446D - DZY Loves Games(高斯消元+期望 DP+矩阵快速幂)
Codeforces 题目传送门 & 洛谷题目传送门 神仙题,%%% 首先考虑所有格子都是陷阱格的情况,那显然就是一个矩阵快速幂,具体来说,设 \(f_{i,j}\) 表示走了 \(i\) 步 ...
随机推荐
- Scrapy学习-7-数据存储至数据库
使用MySQL数据库存储 安装mysql模块包 pip install mysqlclient 相关库文件 sudo apt-get install libmysqlclient-devel sudo ...
- raspberrypi树莓派liunx下安装golang1.9环境(debian)
直接安装go1.6以上版本会出现提示 Set $GOROOT_BOOTSTRAP to a working Go tree >= Go 1.4. Go1.9的构建过程需要用于引导的 Go1.4二 ...
- sgu 102模拟欧拉函数
感觉自己弱爆了,做做SGU吧... #include<iostream> #include<cmath> //欧拉函数 using namespace std; int eul ...
- memcached安装与初步
mac 首先安装homebrew 根目录下 /usr/bin/ruby -e "$(curl -fsSL https://raw.githubusercontent.com/Homebrew ...
- NIO与传统IO的区别(形象比喻)[转]
传统的socket IO中,需要为每个连接创建一个线程,当并发的连接数量非常巨大时,线程所占用的栈内存和CPU线程切换的开销将非常巨大.使用NIO,不再需要为每个线程创建单独的线程,可以用一个含有限数 ...
- Javascript构造函数和原型
相信你已经知道了,Javascript函数也可以作为对象构造器.比如,为了模拟面向对象编程中的Class,可以用如下的代码 function Person(name){ this.name = nam ...
- TeX系列: tikz-3dplot绘图宏包
tikz-3dplot包提供了针对TikZ的命令和坐标变换样式, 能够相对直接地绘制三维坐标系统和简单三维图形. tikz-3dplot包当前处于初创期, 有很多功能有待完善. 安装过程如下: (1) ...
- es删除文档或者删除索引
es删除文档或者删除索引 学习了:https://www.imooc.com/video/15771 删除文档: DELETE http://127.0.0.1:9200/people/man/1 删 ...
- iOS 获取appstore 版本
项目上线以后一般都涉及到升级.那么iOS 怎样从appstore获取到版本 事实上非常easy NSString *url = [[NSString alloc] initWithFormat:@&q ...
- leetcode Valid Palindrome C++&python 题解
题目描写叙述 Given a string, determine if it is a palindrome, considering only alphanumeric characters and ...