Description


小明对数学饱有兴趣,并且是个勤奋好学的学生,总是在课后留在教室向老师请教一些问题。一天他早晨骑车去上课,路上见到一个老伯正在修剪花花草草,顿时想到了一个有关修剪花卉的问题。于是当日课后,小明就向老师提出了这个问题:

一株奇怪的花卉,上面共连有 N 朵花,共有 N−1 条枝干将花儿连在一起,并且未修剪时每朵花都不是孤立的。每朵花都有一个“美丽指数”,该数越大说明这朵花越漂亮,也有“美丽指数”为负数的,说明这朵花看着都让人恶心。所谓“修剪”,意为:去掉其中的一条枝条,这样一株花就成了两株,扔掉其中一株。经过一系列“修剪“之后,还剩下最后一株花(也可能是一朵)。老师的任务就是:通过一系列“修剪”(也可以什么“修剪”都不进行),使剩下的那株(那朵)花卉上所有花朵的“美丽指数”之和最大。

老师想了一会儿,给出了正解。小明见问题被轻易攻破,相当不爽,于是又拿来问你。

Input


第一行一个整数 N(1≤N≤16000) 。表示原始的那株花卉上共 N 朵花。

第二行有 N 个整数,第 I 个整数表示第 I 朵花的美丽指数。

接下来 N−1 行每行两个整数 a,b,表示存在一条连接第 a 朵花和第 b 朵花的枝条。

Output


一个数,表示一系列“修剪”之后所能得到的“美丽指数”之和的最大值。保证绝对值不超过 2147483647。

Sample Input


7

-1 -1 -1 1 1 1 0

1 4

2 5

3 6

4 7

5 7

6 7

Sample Output


3

Hint


【数据规模与约定】

对于 60% 的数据,有 N≤1000 ;

对于 100% 的数据,有 N≤16000 。

题解


好像这两天有点颓水题

随便找一个节点当根节点并dfs得到每个点的子节点个数和父亲节点编号

设F [ x ]为以x为根的子树(包含x)在修剪之后最大的保留值

不停的找叶子节点,用F[ x ]维护F[ fa [ x ] ],记录ans

#include<iostream>
#include<cstdio>
#include<queue>
#include<cmath>
using namespace std;
int w[16007];
struct emm{
int e,f,v;
}a[32007];
int h[16007];
int tot=0;
void con(int x,int y)
{
a[++tot].f=h[x];
h[x]=tot;
a[tot].e=y;
a[++tot].f=h[y];
h[y]=tot;
a[tot].e=x;
return;
}
int z[16007];
int fa[16007];
int v[16007];
int s;
void dfs(int x)
{
for(int i=h[x];i;i=a[i].f)
if(!fa[a[i].e]&&a[i].e!=s)
{
z[x]++;
fa[a[i].e]=x;
dfs(a[i].e);
}
return;
}
queue<int>q;
int main()
{
int n;
scanf("%d",&n);
for(int i=1;i<=n;++i)
scanf("%d",&w[i]);
for(int i=1;i<=n-1;++i)
{
int x,y;
scanf("%d%d",&x,&y);
con(x,y);
}
s=max(n-1,7);//幸运数一定能多卡点常!
dfs(s);
for(int i=1;i<=n;++i)
{
v[i]=w[i];
if(!z[i])q.push(i);
}
int ans=0;
while(!q.empty())
{
int x=q.front();q.pop();
//cout<<x<<endl;
ans=max(ans,v[x]);
if(fa[x])
{
v[fa[x]]=max(v[fa[x]],v[fa[x]]+v[x]);
z[fa[x]]--;
if(!z[fa[x]])q.push(fa[x]);
}
}
cout<<ans;
return 0;
}

「LuoguP1122」 最大子树和的更多相关文章

  1. 「NOI2013」树的计数 解题报告

    「NOI2013」树的计数 这什么神题 考虑对bfs重新编号为1,2,3...n,然后重新搞一下dfs序 设dfs序为\(dfn_i\),dfs序第\(i\)位对应的节点为\(pos_i\) 一个暴力 ...

  2. 「SDOI2017」树点涂色 解题报告

    「SDOI2017」树点涂色 我sb的不行了 其实一开始有一个类似动态dp的想法 每个点维护到lct树上到最浅点的颜色段数,然后维护一个\(mx_{0,1}\)也就是是否用虚儿子的最大颜色 用个set ...

  3. LOJ #2135. 「ZJOI2015」幻想乡战略游戏(点分树)

    题意 给你一颗 \(n\) 个点的树,每个点的度数不超过 \(20\) ,有 \(q\) 次修改点权的操作. 需要动态维护带权重心,也就是找到一个点 \(v\) 使得 \(\displaystyle ...

  4. 「ZJOI2018」历史(LCT)

    「ZJOI2018」历史(LCT) \(ZJOI\) 也就数据结构可做了-- 题意:给定每个点 \(access\) 次数,使轻重链切换次数最大,带修改. \(30pts:\) 挺好想的.发现切换次数 ...

  5. LOJ #2359. 「NOIP2016」天天爱跑步(倍增+线段树合并)

    题意 LOJ #2359. 「NOIP2016」天天爱跑步 题解 考虑把一个玩家的路径 \((x, y)\) 拆成两条,一条是 \(x\) 到 \(lca\) ( \(x, y\) 最近公共祖先) 的 ...

  6. 「SHOI2016」黑暗前的幻想乡 解题报告

    「SHOI2016」黑暗前的幻想乡 sb题想不出来,应该去思考原因,而不是自暴自弃 一开始总是想着对子树做dp,但是状态压不起去,考虑用容斥消减一些条件变得好统计,结果越想越乱. 期间想过矩阵树定理, ...

  7. 「ZJOI2016」大森林 解题报告

    「ZJOI2016」大森林 神仙题... 很显然线段树搞不了 考虑离线操作 我们只搞一颗树,从位置1一直往后移动,然后维护它的形态试试 显然操作0,1都可以拆成差分的形式,就是加入和删除 因为保证了操 ...

  8. 「HNOI2016」树 解题报告

    「HNOI2016」树 事毒瘤题... 我一开始以为每次把大树的子树再接给大树,然后死活不知道咋做,心想怕不是个神仙题哦 然后看题解后才发现是把模板树的子树给大树,虽然思维上难度没啥了,但是还是很难写 ...

  9. 「SCOI2016」背单词 解题报告

    「SCOI2016」背单词 出题人sb 题意有毒 大概是告诉你,你给一堆n个单词安排顺序 如果当前位置为x 当前单词的后缀没在这堆单词出现过,代价x 这里的后缀是原意,但不算自己,举个例子比如abc的 ...

随机推荐

  1. T3139 栈练习3 codevs

    http://codevs.cn/problem/3139/ 题目描述 Description 比起第一题,本题加了另外一个操作,访问栈顶元素(编号3,保证访问栈顶元素时或出栈时栈不为空),现在给出这 ...

  2. 【面试 JDK】【第一篇】Object类面试详解

    1.Object类有哪些方法 1>clone()方法 保护方法,实现对象的浅复制,只有实现了Cloneable接口才可以调用该方法,否则抛出CloneNotSupportedException异 ...

  3. Go -- 判断chan channel是否关闭的方法

    如果不判断chan是否关闭 Notice: 以下代码会产生死循环 代码如下: package main import ( "fmt" ) func main() { c := ma ...

  4. 取汉子拼音首字母的VB.Net方法

    '/ <summary> '/ 获得一个字符串的汉语拼音码 '/ </summary> '/ <param name="strText">字符串 ...

  5. DICOM医学图像显示算法改进与实现——LUT

    引言 随着Ul(超声成像).CT(计算机断层成像).MRI(核磁共振成像).CR(计算机X线成像).电子内窥镜.盯(正电子发射断层成像)和MI(分子影像)等医学影像设备不断涌现,利用计算机对医学影像设 ...

  6. 基于源码学习-fighting

    今天逛着逛着,看到个培训网站,点进去和客服人员聊了一下.接着,看了看他们的培训课程,想了解一下 嵌入式开发的. (人就是要放空自己,把自己当做什么都不会,当着个婴儿[小学生]一般认真,要学什么知识就是 ...

  7. [Cypress] install, configure, and script Cypress for JavaScript web applications -- part2

    Use Cypress to test user registration Let’s write a test to fill out our registration form. Because ...

  8. android存储訪问框架Storage Access Framework

    在了解storage access framework之前.我们先来看看android4.4中的一个特性.假设我们希望能选择android手机中的一张图片,通常都是发送一个Intent给对应的程序.一 ...

  9. 传奇的诞生,PHP三位创始人简介

    PHP到现在为止已经诞生12年了.在这期间它经过不断改善,已经成为Web开发最重要的语言之一.PHP能有今天这样的成就,它的3位创始人(Rasmus Lerdorf.Zeev Suraski和Andi ...

  10. 处理页面载入图片js(等比例压缩图片)

    第一页面html  <div class="admin">${answer.content}</div> <div class="admin ...