HBase之一:HBase原理和设计
一、简介
HBase —— Hadoop Database的简称,Google BigTable的另一种开源实现方式,从问世之初,就为了解决用大量廉价的机器高速存取海量数据、实现数据分布式存储提供可靠的方案。从功能上来讲,HBase不折不扣是一个数据库,与我们熟悉的Oracle、MySQL、MSSQL等一样,对外提供数据的存储和读取服务。而从应用的角度来说,HBase与一般的数据库又有所区别,HBase本身的存取接口相当简单,不支持复杂的数据存取,更不支持SQL等结构化的查询语言;HBase也没有除了rowkey以外的索引,所有的数据分布和查询都依赖rowkey。所以,HBase在表的设计上会有很严格的要求。架构上,HBase是分布式数据库的典范,这点比较像MongoDB的sharding模式,能根据键值的大小,把数据分布到不同的存储节点上,MongoDB根据configserver来定位数据落在哪个分区上,HBase通过访问Zookeeper来获取-ROOT-表所在地址,通过-ROOT-表得到相应.META.表信息,从而获取数据存储的region位置。
二、架构
上面提到,HBase是一个分布式的架构,除去底层存储的HDFS外,HBase本身从功能上可以分为三块:Zookeeper群、HMaster群和HRegionServer群。
- Zookeeper群:HBase集群中不可缺少的重要部分,主要用于存储Master地址、协调Master和RegionServer等上下线、存储临时数据等等。
- HMaster群:Master主要是做一些管理操作,如:region的分配,手动管理操作下发等等,一般数据的读写操作并不需要经过Master集群,所以Master一般不需要很高的配置即可。
- HRegionServer群:RegionServer群是真正数据存储的地方,每个HRegionServer由若干个region组成,而一个region维护了一定区间rowkey值的数据,整个结构如下图:
HBase结构图 ------注:准确的说位于上图下半部分的组建应该是hdfs而非hadoop,hbase并不依赖于hadoop,但是它构建于hdfs之上。
各个组件的功能说明:
2.1、Zookeeper:
Zookeeper Quorum存储-ROOT-表地址、HMaster地址
HRegionServer把自己以Ephedral方式注册到Zookeeper中,HMaster随时感知各个HRegionServer的健康状况
Zookeeper避免HMaster单点问题
2.2、HMaster:
(HMaster没有单点问题,HBase中可以启动多个HMaster,通过Zookeeper的MasterElection机制保证总有一个Master在运行。)
主要负责Table和Region的管理工作:
1 管理用户对表的增删改查操作
2 管理HRegionServer的负载均衡,调整Region分布
3 Region Split后,负责新Region的分布
4 在HRegionServer停机后,负责失效HRegionServer上Region迁移
5 HDFS上的垃圾文件回收
6 处理schema更新请求
2.3、HRegionServer:
HBase中最核心的模块,主要负责响应用户I/O请求,向HDFS文件系统中读写数据
HRegionServer管理一些列HRegion对象;
每个HRegion对应Table中一个Region,HRegion由多个HStore组成;
每个HStore对应Table中一个Column Family的存储;
Column Family就是一个集中的存储单元,故将具有相同IO特性的Column放在一个Column Family会更高效
2.4、HStore:
HBase存储的核心。由MemStore和StoreFile组成。
MemStore是Sorted Memory Buffer。用户写入数据的流程:
Client写入 -> 存入MemStore,一直到MemStore满 -> Flush成一个StoreFile,直至增长到一定阈值 -> 触发Compact合并操作 -> 多个StoreFile合并成一个StoreFile,同时进行版本合并和数据删除 -> 当StoreFiles Compact后,逐步形成越来越大的StoreFile ->单个StoreFile大小超过一定阈值后,触发Split操作,把当前Region Split成2个Region,Region会下线,新Split出的2个孩子Region会被HMaster分配到相应的HRegionServer 上,使得原先1个Region的压力得以分流到2个Region上。
由此过程可知,HBase只是增加数据,所有的更新和删除操作,都是在Compact阶段做的,所以,用户写操作只需要进入到内存即可立即返回,从而保证I/O高性能。
2.5、HLog
引入HLog原因:
在分布式系统环境中,无法避免系统出错或者宕机,一旦HRegionServer意外退出,MemStore中的内存数据就会丢失,引入HLog就是防止这种情况
工作机制:
每 个HRegionServer中都会有一个HLog对象,HLog是一个实现Write Ahead Log的类,每次用户操作写入Memstore的同时,也会写一份数据到HLog文件,HLog文件定期会滚动出新,并删除旧的文件(已持久化到 StoreFile中的数据)。当HRegionServer意外终止后,HMaster会通过Zookeeper感知,HMaster首先处理遗留的 HLog文件,将不同region的log数据拆分,分别放到相应region目录下,然后再将失效的region重新分配,领取到这些region的 HRegionServer在Load Region的过程中,会发现有历史HLog需要处理,因此会Replay HLog中的数据到MemStore中,然后flush到StoreFiles,完成数据恢复。
2.5.1、LogFlusher
前面提到,数据以KeyValue形式到达HRegionServer,将写入WAL,之后,写入一个SequenceFile。看过去没问题,但是因为数据流在写入文件系统时,经常会缓存以提高性能。这样,有些本以为在日志文件中的数据实际在内存中。这里,我们提供了一个LogFlusher的类。它调用HLog.optionalSync(),后者根据 hbase.regionserver.optionallogflushinterval
(默认是10秒),定期调用Hlog.sync()。另外,HLog.doWrite()也会根据 hbase.regionserver.flushlogentries
(默认100秒)定期调用Hlog.sync()。Sync() 本身调用HLog.Writer.sync(),它由SequenceFileLogWriter实现。
2.5.2、LogRoller
Log的大小通过$HBASE_HOME/conf/hbase-site.xml 的 hbase.regionserver.logroll.period
限制,默认是一个小时。所以每60分钟,会打开一个新的log文件。久而久之,会有一大堆的文件需要维护。首先,LogRoller调用HLog.rollWriter(),定时滚动日志,之后,利用HLog.cleanOldLogs()可以清除旧的日志。它首先取得存储文件中的最大的sequence number,之后检查是否存在一个log所有的条目的“sequence number”均低于这个值,如果存在,将删除这个log。
每个region server维护一个HLog,而不是每一个region一个,这样不同region(来自不同的table)的日志会混在一起,这样做的目的是不断追加单个文件相对于同时写多个文件而言,可以减少磁盘寻址次数,因此可以提高table的写性能。带来麻烦的时,如果一个region server下线,为了恢复其上的region,需要讲region server上的log进行拆分,然后分发到其他region server上进行恢复。
三、HBase存储格式
HBase中的所有数据文件都存储在Hadoop HDFS文件系统上,格式主要有两种:
1 HFile HBase中KeyValue数据的存储格式,HFile是Hadoop的二进制格式文件,实际上StoreFile就是对HFile做了轻量级包装,即StoreFile底层就是HFile
2 HLog File,HBase中WAL(Write Ahead Log) 的存储格式,物理上是Hadoop的Sequence File
3.1、HFile
HFile文件不定长,长度固定的块只有两个:Trailer和FileInfo
Trailer中指针指向其他数据块的起始点
File Info中记录了文件的一些Meta信息,例如:AVG_KEY_LEN,AVG_VALUE_LEN, LAST_KEY, COMPARATOR, MAX_SEQ_ID_KEY等
Data Index和Meta Index块记录了每个Data块和Meta块的起始点
Data Block是HBase I/O的基本单元,为了提高效率,HRegionServer中有基于LRU的Block Cache机制
每个Data块的大小可以在创建一个Table的时候通过参数指定,大号的Block有利于顺序Scan,小号Block利于随机查询
每个Data块除了开头的Magic以外就是一个个KeyValue对拼接而成, Magic内容就是一些随机数字,目的是防止数据损坏
HFile里面的每个KeyValue对就是一个简单的byte数组。这个byte数组里面包含了很多项,并且有固定的结构。
KeyLength和ValueLength:两个固定的长度,分别代表Key和Value的长度
Key部分:Row Length是固定长度的数值,表示RowKey的长度,Row 就是RowKey
Column Family Length是固定长度的数值,表示Family的长度
接着就是Column Family,再接着是Qualifier,然后是两个固定长度的数值,表示Time Stamp和Key Type(Put/Delete)
Value部分没有这么复杂的结构,就是纯粹的二进制数据
3.2、HLog
HLog文件就是一个普通的Hadoop Sequence File,Sequence File 的Key是HLogKey对象,HLogKey中记录了写入数据的归属信息,除了table和region名字外,同时还包括 sequence number和timestamp,timestamp是“写入时间”,sequence number的起始值为0,或者是最近一次存入文件系统中sequence number。
HLog Sequece File的Value是HBase的KeyValue对象,即对应HFile中的KeyValue。
3.3、目录表(.meta.和-root-)
-ROOT-: 保存 .META. 表存在哪里的踪迹。 -ROOT- 表结构如下:
Key:
.META. region key (.META.,,1)
Values:
info:regioninfo (序列化.META.的 HRegionInfo 实例 )
info:server ( 保存 .META.的RegionServer的server:port)
info:serverstartcode ( 保存 .META.的RegionServer进程的启动时间)
.META. :保存系统中所有region列表。 .META.表结构如下:
Key:
Region key 格式 ([table],[region start key],[region id])
Values:
info:regioninfo (序列化.META.的 HRegionInfo 实例 )
info:server ( 保存 .META.的RegionServer的server:port)
info:serverstartcode ( 保存 .META.的RegionServer进程的启动时间)
以上是官网文档对于.meta.和-root-的描述,简而言之,-root-中存储了.meta.的位置,而在.meta.中保存了具体数据(region)的存储位置。如图:
Zookeeper中记录了-ROOT-表的location
客户端访问数据的流程:
Client -> Zookeeper -> -ROOT- -> .META.-> 用户数据表
多次网络操作,不过client端有cache缓存。
A、启动时序
1.启动时主服务器调用AssignmentManager.
2.AssignmentManager 在META中查找已经存在的区域分配。
3.如果区域分配还有效(如 RegionServer 还在线),那么分配继续保持。
4.如果区域分配失效,LoadBalancerFactory 被调用来分配区域。 DefaultLoadBalancer 将随机分配区域到RegionServer.
5.META 随RegionServer 分配更新(如果需要) , RegionServer 启动区域开启代码(RegionServer 启动时进程)
B、故障转移
当regionServer故障退出时:
1.区域立即不可获取,因为区域服务器退出。
2.主服务器会检测到区域服务器退出。
3.区域分配会失效并被重新分配,如同启动时序。
C、预写日志(wal)
每个RegionServer会将更新(Puts, Deletes)先记录到预写日志中(WAL),然后将其更新在Store的MemStore里面。这样就保证了HBase的写的可靠性。如果没有WAL,当RegionServer宕掉的时候,MemStore还没有flush,StoreFile还没有保存,数据就会丢失。HLog 是HBase的一个WAL实现,一个RegionServer有一个HLog实例。
WAL 保存在HDFS 的 /hbase/.logs/ 里面,每个region一个文件。
数据组织
整个架构中,ZK用于服务协调和整个集群运行过程中部分信息的保存和-ROOT-表地址定位,Master用于集群内部管理,所以剩下的RS主要用于处理数据。
RS是处理数据的主要场所,那么在RS内部的数据是怎么分布的?其实RS本身只是一个容器,其定义了一些功能线程,比如:数据合并线程(compact thread)、storeFile分割线程(split thread)等等。容器中的主要对象就是region,region是一个表根据自身rowkey范围划分的一部分,一个表可以被划分成若干部分,也就是若干个region,region可以根据rowkey范围不同而被分布在不同的RS上(当然也可以在同一个RS上,但不建议这么做)。一个RS上可以包含多个表的region,也可以只包含一个表的部分region,RS和表是两个不同的概念。
这里还有一个概念——列簇。对HBase有一些了解的人,或多或少听说过:HBase是一个列式存储的数据库,而这个列式存储中的列,其实是区别于一般数据库的列,这里的列的概念,就是列簇,列簇,顾名思义就是很多列的集合,而在数据存储上来讲,不同列簇的数据,一定是分开存储的,即使是在同一个region内部,不同的列簇也存储在不同的文件夹中,这样做的好处是,一般我们定义列簇的时候,通常会把类似的数据放入同一个列簇,不同的列簇分开存储,有利于数据的压缩,并且HBase本身支持多种压缩方式。
原理
前面介绍了HBase的一般架构,我们知道了HBase有ZK、Master和RS等组成,本节我们来介绍下HBase的基本原理,从数据访问、RS路由到RS内部缓存、数据存储和刷写再到region的合并和拆分等等功能。
RegionServer定位
访问HBase通过HBase客户端(或API)进行,整个HBase提供给外部的地址,其实是ZK的入口,前面也介绍了,ZK中有保存-ROOT-所在的RS地址,从-ROOT-表可以获取.META.表信息,根据.META.表可以获取region在RS上的分布,整个region寻址过程大致如下:
RS定位过程
- 首先,Client通过访问ZK来请求目标数据的地址。
- ZK中保存了-ROOT-表的地址,所以ZK通过访问-ROOT-表来请求数据地址。
- 同样,-ROOT-表中保存的是.META.的信息,通过访问.META.表来获取具体的RS。
- .META.表查询到具体RS信息后返回具体RS地址给Client。
- Client端获取到目标地址后,然后直接向该地址发送数据请求。
上述过程其实是一个三层索引结构,从ZK获取-ROOT-信息,再从-ROOT-获取.META.表信息,最后从.META.表中查到RS地址后缓存。这里有几个问题:
- 既然ZK中能保存-ROOT-信息,那么为什么不把.META.信息直接保存在ZK中,而需要通过-ROOT-表来定位?
- Client查找到目标地址后,下一次请求还需要走ZK —> -ROOT- —> .META.这个流程么?
先来回答第一个问题:为什么不直接把.META.表信息直接保存到ZK中?主要是为了保存的数据量考虑,ZK中不宜保存大量数据,而.META.表主要是保存Region和RS的映射信息,region的数量没有具体约束,只要在内存允许的范围内,region数量可以有很多,如果保存在ZK中,ZK的压力会很大。所以,通过一个-ROOT-表来转存到RS中是一个比较理想的方案,相比直接保存在ZK中,也就多了一层-ROOT-表的查询,对性能来说影响不大。
第二个问题:每次访问都需要走ZK –> -ROOT- —> .META.的流程么?当然不需要,Client端有缓存,第一次查询到相应region所在RS后,这个信息将被缓存到Client端,以后每次访问都直接从缓存中获取RS地址即可。当然这里有个意外:访问的region若果在RS上发生了改变,比如被balancer迁移到其他RS上了,这个时候,通过缓存的地址访问会出现异常,在出现异常的情况下,Client需要重新走一遍上面的流程来获取新的RS地址。总体来说,region的变动只会在极少数情况下发生,一般变动不会很大,所以在整个集群访问过程中,影响可以忽略。
Region数据写入
HBase通过ZK —> -ROOT- —> .META.的访问获取RS地址后,直接向该RS上进行数据写入操作,整个过程如下图:
RegionServer数据操作过程
Client通过三层索引获得RS的地址后,即可向指定RS的对应region进行数据写入,HBase的数据写入采用WAL(write ahead log)的形式,先写log,后写数据。HBase是一个append类型的数据库,没有关系型数据库那么复杂的操作,所以记录HLog的操作都是简单的put操作(delete/update操作都被转化为put进行)
HLog
HLog写入
HLog是HBase实现WAL方式产生的日志信息,其内部是一个简单的顺序日志,每个RS上的region都共享一个HLog,所有对于该RS上的region数据写入都被记录到该HLog中。HLog的主要作用就是在RS出现意外崩溃的时候,可以尽量多的恢复数据,这里说是尽量多,因为在一般情况下,客户端为了提高性能,会把HLog的auto flush关掉,这样HLog日志的落盘全靠操作系统保证,如果出现意外崩溃,短时间内没有被fsync的日志会被丢失。
HLog过期
HLog的大量写入会造成HLog占用存储空间会越来越大,HBase通过HLog过期的方式进行HLog的清理,每个RS内部都有一个HLog监控线程在运行,其周期可以通过hbase.master.cleaner.interval进行配置。
HLog在数据从memstore flush到底层存储上后,说明该段HLog已经不再被需要,就会被移动到.oldlogs这个目录下,HLog监控线程监控该目录下的HLog,当该文件夹下的HLog达到hbase.master.logcleaner.ttl设置的过期条件后,监控线程立即删除过期的HLog。
Memstore
数据存储
memstore是region内部缓存,其大小通过HBase参数hbase.hregion.memstore.flush.size进行配置。RS在写完HLog以后,数据写入的下一个目标就是region的memstore,memstore在HBase内部通过LSM-tree结构组织,所以能够合并大量对于相同rowkey上的更新操作。
正是由于memstore的存在,HBase的数据写入都是异步的,而且性能非常不错,写入到memstore后,该次写入请求就可以被返回,HBase即认为该次数据写入成功。这里有一点需要说明,写入到memstore中的数据都是预先按照rowkey的值进行排序的,这样有利于后续数据查找。
数据刷盘
memstore中的数据在一定条件下会进行刷写操作,使数据持久化到相应的存储设备上,触发memstore刷盘的操作有多种不同的方式如下图:
Memstore刷写流程
以上1,2,3都可以触发memstore的flush操作,但是实现的方式不同:
- 1通过全局内存控制,触发memstore刷盘操作。memstore整体内存占用上限通过参数hbase.regionserver.global.memstore.upperLimit进行设置,当然在达到上限后,memstore的刷写也不是一直进行,在内存下降到hbase.regionserver.global.memstore.lowerLimit配置的值后,即停止memstore的刷盘操作。这样做,主要是为了防止长时间的memstore刷盘,会影响整体的性能。
- 在该种情况下,RS中所有region的memstore内存占用都没达到刷盘条件,但整体的内存消耗已经到一个非常危险的范围,如果持续下去,很有可能造成RS的OOM,这个时候,需要进行memstore的刷盘,从而释放内存。
- 2手动触发memstore刷盘操作
- HBase提供API接口,运行通过外部调用进行memstore的刷盘
- 3 memstore上限触发数据刷盘
- 前面提到memstore的大小通过hbase.hregion.memstore.flush.size进行设置,当region中memstore的数据量达到该值时,会自动触发memstore的刷盘操作。
刷盘影响
memstore在不同的条件下会触发数据刷盘,那么整个数据在刷盘过程中,对region的数据写入等有什么影响?memstore的数据刷盘,对region的直接影响就是:在数据刷盘开始到结束这段时间内,该region上的访问都是被拒绝的,这里主要是因为在数据刷盘结束时,RS会对改region做一个snapshot,同时HLog做一个checkpoint操作,通知ZK哪些HLog可以被移到.oldlogs下。从前面图上也可以看到,在memstore写盘开始,相应region会被加上UpdateLock锁,写盘结束后该锁被释放。
StoreFile
memstore在触发刷盘操作后会被写入底层存储,每次memstore的刷盘就会相应生成一个存储文件HFile,storeFile即HFile在HBase层的轻量级分装。数据量的持续写入,造成memstore的频繁flush,每次flush都会产生一个HFile,这样底层存储设备上的HFile文件数量将会越来越多。不管是HDFS还是Linux下常用的文件系统如Ext4、XFS等,对小而多的文件上的管理都没有大文件来的有效,比如小文件打开需要消耗更多的文件句柄;在大量小文件中进行指定rowkey数据的查询性能没有在少量大文件中查询来的快等等。
Compact
大量HFile的产生,会消耗更多的文件句柄,同时会造成RS在数据查询等的效率大幅度下降,HBase为解决这个问题,引入了compact操作,RS通过compact把大量小的HFile进行文件合并,生成大的HFile文件。
RS上的compact根据功能的不同,可以分为两种不同类型,即:minor compact和major compact。
- Minor Compact
minor compact又叫small compact,在RS运行过程中会频繁进行,主要通过参数hbase.hstore.compactionThreshold进行控制,该参数配置了HFile数量在满足该值时,进行minor compact,minor compact只选取region下部分HFile进行compact操作,并且选取的HFile大小不能超过hbase.hregion.max.filesize参数设置。
- Major Compact
相反major compact也被称之为large compact,major compact会对整个region下相同列簇的所有HFile进行compact,也就是说major compact结束后,同一个列簇下的HFile会被合并成一个。major compact是一个比较长的过程,对底层I/O的压力相对较大。
major compact除了合并HFile外,另外一个重要功能就是清理过期或者被删除的数据。前面提到过,HBase的delete操作也是通过append的方式写入,一旦某些数据在HBase内部被删除了,在内部只是被简单标记为删除,真正在存储层面没有进行数据清理,只有通过major compact对HFile进行重组时,被标记为删除的数据才能被真正的清理。
compact操作都有特定的线程进行,一般情况下不会影响RS上数据写入的性能,当然也有例外:在compact操作速度跟不上region中HFile增长速度时,为了安全考虑,RS会在HFile达到一定数量时,对写入进行锁定操作,直到HFile通过compact降到一定的范围内才释放锁。
Split
compact将多个HFile合并单个HFile文件,随着数据量的不断写入,单个HFile也会越来越大,大量小的HFile会影响数据查询性能,大的HFile也会,HFile越大,相对的在HFile中搜索的指定rowkey的数据花的时间也就越长,HBase同样提供了region的split方案来解决大的HFile造成数据查询时间过长问题。
一个较大的region通过split操作,会生成两个小的region,称之为Daughter,一般Daughter中的数据是根据rowkey的之间点进行切分的,region的split过程大致如下图:
region split流程
- region先更改ZK中该region的状态为SPLITING。
- Master检测到region状态改变。
- region会在存储目录下新建.split文件夹用于保存split后的daughter region信息。
- Parent region关闭数据写入并触发flush操作,保证所有写入Parent region的数据都能持久化。
- 在.split文件夹下新建两个region,称之为daughter A、daughter B。
- Daughter A、Daughter B拷贝到HBase根目录下,形成两个新的region。
- Parent region通知修改.META.表后下线,不再提供服务。
- Daughter A、Daughter B上线,开始向外提供服务。
- 如果开启了balance_switch服务,split后的region将会被重新分布。
上面1 ~ 9就是region split的整个过程,split过程非常快,速度基本会在秒级内,那么在这么快的时间内,region中的数据怎么被重新组织的?
其实,split只是简单的把region从逻辑上划分成两个,并没有涉及到底层数据的重组,split完成后,Parent region并没有被销毁,只是被做下线处理,不再对外部提供服务。而新产生的region Daughter A和Daughter B,内部的数据只是简单的到Parent region数据的索引,Parent region数据的清理在Daughter A和Daughter B进行major compact以后,发现已经没有到其内部数据的索引后,Parent region才会被真正的清理。
HBase设计
HBase是一个分布式数据库,其性能的好坏主要取决于内部表的设计和资源的分配是否合理。
Rowkey设计
rowkey是HBase实现分布式的基础,HBase通过rowkey范围划分不同的region,分布式系统的基本要求就是在任何时候,系统的访问都不要出现明显的热点现象,所以rowkey的设计至关重要,一般我们建议rowkey的开始部分以hash或者MD5进行散列,尽量做到rowkey的头部是均匀分布的。禁止采用时间、用户id等明显有分段现象的标志直接当作rowkey来使用。
列簇设计
HBase的表设计时,根据不同需求有不同选择,需要做在线查询的数据表,尽量不要设计多个列簇,我们知道,不同的列簇在存储上是被分开的,多列簇设计会造成在数据查询的时候读取更多的文件,从而消耗更多的I/O。
TTL设计
选择合适的数据过期时间也是表设计中需要注意的一点,HBase中允许列簇定义数据过期时间,数据一旦超过过期时间,可以被major compact进行清理。大量无用历史数据的残余,会造成region体积增大,影响查询效率。
Region设计
一般地,region不宜设计成很大,除非应用对阶段性性能要求很多,但是在将来运行一段时间可以接受停服处理。region过大会导致major compact调用的周期变长,而单次major compact的时间也相应变长。major compact对底层I/O会造成压力,长时间的compact操作可能会影响数据的flush,compact的周期变长会导致许多删除或者过期的数据不能被及时清理,对数据的读取速度等都有影响。
相反,小的region意味着major compact会相对频繁,但是由于region比较小,major compact的相对时间较快,而且相对较多的major compact操作,会加速过期数据的清理。
当然,小region的设计意味着更多的region split风险,region容量过小,在数据量达到上限后,region需要进行split来拆分,其实split操作在整个HBase运行过程中,是被不怎么希望出现的,因为一旦发生split,涉及到数据的重组,region的再分配等一系列问题。所以我们在设计之初就需要考虑到这些问题,尽量避免region的运行过程中发生split。
HBase可以通过在表创建的时候进行region的预分配来解决运行过程中region的split产生,在表设计的时候,预先分配足够多的region数,在region达到上限前,至少有部分数据会过期,通过major compact进行清理后, region的数据量始终维持在一个平衡状态。
region数量的设计还需要考虑内存上的限制,通过前面的介绍我们知道每个region都有memstore,memstore的数量与region数量和region下列簇的数量成正比,一个RS下memstore内存消耗:
Memory = memstore大小 * region数量 * 列簇数量
如果不进行前期数据量估算和region的预分配,通过不断的split产生新的region,容易导致因为内存不足而出现OOM现象。
HBase之一:HBase原理和设计的更多相关文章
- (转)HBase 的原理和设计
转自:HBase的原理和设计 HBase架构:
- 【转】HBase原理和设计
简介 HBase —— Hadoop Database的简称,Google BigTable的另一种开源实现方式,从问世之初,就为了解决用大量廉价的机器高速存取海量数据.实现数据分布式存储提供可靠的方 ...
- HBase原理和设计
转载 2016年1月10日:http://www.sysdb.cn/index.php/2016/01/10/hbase_principle/ 简介 架构 数据组织 原理 RS定位 region写入 ...
- Hbase:原理和设计
转载自:http://www.sysdb.cn/index.php/2016/01/10/hbase_principle/ ,感谢原作者. 简介 HBase —— Hadoop Database的简称 ...
- HBase原理、设计与优化实践
转自:http://www.open-open.com/lib/view/open1449891885004.html 1.HBase 简介 HBase —— Hadoop Database的简称,G ...
- Hbase架构与原理
Hbase架构与原理 HBase是一个分布式的.面向列的开源数据库,该技术来源于 Fay Chang所撰写的Google论文"Bigtable:一个结构化数据的分布式存储系统".就 ...
- HBase简介及原理
HBase简介 1.HBase是一个万亿行,百万列大表(Big Table),数据存放在hdfs集群中: 写操作使用MapReduce处理,将(增删改)处理结果放入HBase中,读就直接读HBase: ...
- HBase底层存储原理
HBase底层存储原理——我靠,和cassandra本质上没有区别啊!都是kv 列存储,只是一个是p2p另一个是集中式而已! 首先HBase不同于一般的关系数据库, 它是一个适合于非结构化数据存储的数 ...
- 大数据技术之_11_HBase学习_01_HBase 简介+HBase 安装+HBase Shell 操作+HBase 数据结构+HBase 原理
第1章 HBase 简介1.1 什么是 HBase1.2 HBase 特点1.3 HBase 架构1.3 HBase 中的角色1.3.1 HMaster1.3.2 RegionServer1.3.3 ...
随机推荐
- 如何快速的知道Maven插件的命令行输入参数
用命令行使用Maven的插件时,-D表示属性的输入,-P表示构建配置文件的输入. 比如要使用package生命周期阶段对Application项目进行打包jar时,查找方式如下: 1.由于packag ...
- amplab
https://github.com/amplab/SparkNet https://amplab.cs.berkeley.edu/
- mysql explain 的type解释
原文:http://blog.csdn.net/github_26672553/article/details/52058782 Explain命令 用于分析sql语句的执行情况和成本预估 今天我们重 ...
- Java并发编程(三)volatile域
相关文章 Java并发编程(一)线程定义.状态和属性 Java并发编程(二)同步 Android多线程(一)线程池 Android多线程(二)AsyncTask源代码分析 前言 有时仅仅为了读写一个或 ...
- 【基础练习】【线性DP】codevs3027 线段覆盖2题解
文章被盗还是非常严重,加版权信息 转载请注明出处 [ametake版权全部]http://blog.csdn.net/ametake欢迎来看看 这道题目是线性动归 可是思想和背包有些类似 事实上线性动 ...
- Qt:解析命令行
Qt从5.2版開始提供了两个类QCommandLineOption和QCommandLineParser来解析应用的命令行參数. 一.命令行写法 命令行:"-abc" 在QComm ...
- Html5培训之精髓
一.核心技术(可去各技术官网学习) 1.html5的六大核心技术:Html5,CSS3,JavaScript,WebSocket,PhoneGap,Node.js,它们覆盖了设备端,浏览器端和云端的开 ...
- YII RBAC基于角色的访问控制
基于角色的访问控制( Role-Based Access Control ),是一种简单的而又强大的集中访问控制.基于Yii Framework 的 authManager 组件实现了分等级的 RBA ...
- HDU 1060 Leftmost Digit (数学/大数)
Leftmost Digit Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)To ...
- Python演绎的精彩故事(二)
书接上回.在展示了App最顶层的代码后,我们去看看各模块怎样编程. 为了能看懂各模块的代码,首先须要铺垫一下Softchip架构的基本概念和设计规范. 1.随意模块不持有其它模块的实例.自然不再显式使 ...