Spherical Harmonics Lighting
【转自:http://www.cnblogs.com/daniagger/archive/2012/05/29/2524133.html】
1、背景知识
1.1 光照表示
之前我们都只考虑光源点和物体表面点的光照作用,而现在,我们考虑物体表面点延伸的微型平面,这个微型平面作为半球形的底部,因此光照射进来的范围就是整个半球形,这也是BRDF的基础。
1.2 数据压缩
对于压缩信号来说,很多压缩技术基于这样一个思路:使用不同基函数的不同组合来组成一个更为复杂的数字信号表示。
保存数字信号的最繁琐方法是保存每一个数据点,然而一个复杂的信号可能有成千上万个点,所以需要找到方法来压缩。对于每一个基函数,我们用频率(frequency),振幅(amplitude)和相位(phase)来表示,这三个数被称为系数(coefficient),这样就大大减小了数据量。
在现实生活中,数字信号并不能很明显的表示成多个基函数的组合,很多例子中,系数的个数和原始数据点的个数相差无几,所以要找寻其他压缩方法。人们要寻找信号中那些信息是最为重要的,有些信息可能是噪声,这些信息需要被剔除出去。
基函数是这样一种函数,可以被裁剪和组合,来模拟任何一种数学函数。裁剪因子通常被称为系数(coefficient)。举个例子,如果要通过基函数组Bi(x)来模拟函数f(x),ci是对应的系数。
公式如下图:

这也就是傅里叶变换。
1.3 光照信息的压缩
对于diffuse lighting来说,高频率的部分需要被剔除。
2、SH的定义
Spherical harmonics是可以重构任何函数的基函数,研究二维函数的单位球。
SH是定义在单位球表面的基函数,表示在球面坐标下。
球坐标系


其中r=1。
SH的一般形式是

实际形式,也就是接下来会用到的形式是

最终形式是

公式中的项:
Plm是勒让德多项式,定义在[-1,1]范围内,递归式是

Klm是用来将函数规范化的裁剪因子,定义式是

SH的简化形式为(二维变一维)

3、构造
由SH基函数模拟的函数是

其中

上面的函数是原始函数的限制带宽版,原始函数表示为

使用SH的简化形式,则模拟的函数为

使用Monte Carlo积分算法,可以求出系数为

对于用SH构造的函数,你需要将单位球划分为n x n个样品,对于每一个系数,遍历所有的样品,应用上面的公式。最终可以得到所有系数的表达式。
4、SH的性质
4.1 正交性

4.2

4.3

5、SH应用到光照上
5.1 光照方程
最常用的光照方程是


Lo是表面顶点x在w方向上发出的光照度,其中w'是入射光线,由自发光部分(Le)和反射部分(Lr)组成,Lr的积分是对半球范围内所有的光线进行积分。
通过使用differential solid angle,光照方程可表示为

反射分量是对S中所有点的积分,入射光线从x’到x,V是x和x’之间可见度方程,G是几何项。V返回布尔值(如果x和x’相互可见,则返回1),几何项则依赖于表面点x和x’之间的几何关系。
该积分不能实时计算出来,所以需要预处理这个积分,利用性质2。
预处理步骤:
a、将入射光线投影到SH基上。入射光线需要表示成球坐标方程。
b、对于物体上的每一个点,将BRDF项、可见项、几何项的乘积投影到SH基上。该乘积也被当做转移方程。
实时积分项可以通过计算转移方程的SH系数和入射光线的SH系数的点积而得到,即利用性质2,将入射光线当成复合函数,BRDF项可见项几何项的乘积当做另一个复合函数,原始积分也就是两个复合函数乘积的积分。
同时,取样点分布在n x n的方形网格上,投影到球坐标系

现在我们需要简化光照方程,我们不考虑自发光,并且反射光线均匀分布在所有方向,BRDF是一个常量,最终我们得到

6、SH Diffuse Lighting
不考虑阴影的情况下(V项恒为1),特定点的diffuse lighting为

现在需要求入射光线的SH投影和cosine项(即转移方程)的SH投影,两者都用Monte Carlo积分法,这些都在预处理步完成。运行时,特定点的光照计算使用上述公式(将两个SH系数求点积)。
7、SH Diffuse Shadowed Lighting
现在需要考虑V项

新的转移方程变成了

要确定V项,需要从当前顶点追踪射线到场景中,如果射线和一个三角面片相交,则光线被阻挡。
8、SH Diffuse Shadowed Inter-Reflected Lighting
现在,不仅要考虑从光源发出来的光线,还要考虑在场景中互相作用的光线。也就是全局光照。简化了的光照方程如下

Spherical Harmonics Lighting的更多相关文章
- 球谐光照(Spherical Harmonics Lighting)及其应用-实验篇
简介 之前在一篇实时深度图优化的论文中看到球谐光照(Spherical Harmonics Lighting)的应用,在查阅了许许多多资料之后还是无法完全理解,我个人觉得如果之前对实时渲染技术不是很了 ...
- 球谐光照(Spherical Harmonics Lighting)及其应用-应用篇
上一篇介绍了球谐函数的一些原理和性质,本篇主要介绍如何实现球谐光照,将这种光照应用到实际的场景中去. 我们知道,球谐光照实际上就是将周围的环境光采样成几个系数,然后渲染的时候用这几个系数来对光照进行还 ...
- Luckily general gradient for spherical harmonics is defined
http://web4.cs.ucl.ac.uk/staff/j.kautz/publications/gradientSH_RS04.pdf
- Thinking in Unity3D:渲染管线中的Rendering Path
关于<Thinking in Unity3D> 笔者在研究和使用Unity3D的过程中,获得了一些Unity3D方面的信息,同时也感叹Unity3D设计之精妙.不得不说,笔者最近几年的 ...
- Physically Based Shader Development for Unity 2017 Develop Custom Lighting Systems (Claudia Doppioslash 著)
http://www.doppioslash.com/ https://github.com/Apress/physically-based-shader-dev-for-unity-2017 Par ...
- SRBF Lighting
SRBF的全称是Spherical Radial Basis Function,笔者擅自翻译为球面放射基底函数.由于SRBF并不怎么出名,相对来说,SH(Spherical Harmonic)球 ...
- Image Based Lighting In UE3
"IBL"全称为"Image-based Lighint",是一种伪装全局光照的方法.使用该方法可以获得较好的视觉效果并且可以达到实时渲染的目的. 实现的方法之 ...
- [我给Unity官方视频教程做中文字幕]beginner Graphics – Lessons系列之灯光介绍Lights
[我给Unity官方视频教程做中文字幕]beginner Graphics – Lessons系列之灯光介绍Lights 既上一篇分享了中文字幕的摄像机介绍Cameras后,本篇分享一下第2个已完工的 ...
- Computer Graphics Research Software
Computer Graphics Research Software Helping you avoid re-inventing the wheel since 2009! Last update ...
随机推荐
- 【Todo】已经打开的页面需要清掉的坑
下面是当前我浏览器里面打开的技术文章.需要清掉.一个坑一个坑地填吧. 微信文件传输里面也有几篇12.6号的<Akuna Capital电面面经><2016最流行的Java EE服务器 ...
- ngnix
nginx的平滑重启 博客分类: nginx nginx平滑重启 在研发过程中,修改nginx的配置文件nginx.conf是很平常的事,需要重启nginx.如果我们直接reload是有一定风险的, ...
- C#面向对象 结构体和类的应用
- ok6410[000] ubuntu1604_64bit下安装wps
虽说Ubuntu下有自动的office工具,不过使用上体验很差.而国内最好的office软件也就是金山的wps. ------------------------------------------- ...
- tomcat重启报错
一.tomcat重启报java环境变量错 报错信息详细如下: Neither the JAVA_HOME nor the JRE_HOME environment variable is define ...
- Jmeter使用Http代理服务器报DNSName components must begin with a letter的错
最近了解到JMeter可以实现app的性能测试,需要借助JMeter的Http代理服务器来录制脚本. 于是,就按着网上的教程来进行操作,然而出师不利啊,刚启动就报错
- mac classpath设置
I've been searching for the answer daylong, and finally had the problems solved. I am going to write ...
- SpringMVC -- 第一个简单的程序
学习springMVC,我们来记录下第一个HelloWord的程序 首先.我们组织须要的jar包 commons-logging-1.1.3.jar spring-aop-4.1.7.RELEASE. ...
- 6.游戏特别离不开脚本(3)-JS脚本操作java(3)(直接操作JS文件或者调用函数)
java直接运行JS脚本文件的语句,游戏开发时,策划的配置文件什么的就可以分开管理了,游戏逻辑也是一样,比如:一个功能一个脚本或者一个系统一个脚本. import java.io.FileNotFou ...
- __sizeof__()
https://bugs.python.org/issue2898 https://bugs.python.org/file10353/footprint.patch Index: Python/sy ...