bzoj5483: [Usaco2018 Dec]Balance Beam
又又又又又又又被踩爆了
首先容易写出这样的期望方程:f(1)=max(d(1),f(2)/2),f(n)=max(d(n),f(n-1)/2), f(i)=max(d(i),(f(i-1)+f(i+1))/2),d是直接下来的收益
令S(i)等于后面那一个东西,那么f(i)=max(d(i),S(i))
套了max很难直接求,但是S(i)和d(i)一定是定值,那些由S贡献的点实际上就是被它左右两边各一个点的d贡献的,更确切的,假如把那些点是由d贡献找出来,那些由S贡献的点实际上就是被它左右两边第一个被d贡献的点贡献的
这样一来假设这两个点为L,R,则f(i)=x到L的概率*d(L)+x到R的概率*d(R)
考虑这样的一个子问题:数轴上0~n长度为n一段中,求由x走到n的概率
设g(i)表示i走到n的概率,则g(0)=0,g(n)=1,g(i)=(g(i-1)+g(i+1))/2,明显这个是个等差数列啊!
那么公差就是1/n,x走到n的概率就是x/n
x走到0,同理g(0)=1,g(n)=0,公差为-1/n,概率就是n-x/n
所以f(i)=((R-x)*d(L)+(x-L)*d(R))/(R-L)
现在问题就在于如何找到那些由d贡献的点了,我们在平面直角坐标系中把(i,d(i))标出来,则这些点就是凸包上的点
why?看图,如果我们要判断x是不是靠d贡献
如图,((R-x)*d(L)+(x-L)*d(R))就是两个矩形的面积,容易发现两个圈画出来的面积是相等的,画出来的一段就是由L和R贡献出的S(x),它就在L和R的直线上,是这条直线的自变量取x时的贡献!也就是说,这个点在直线下方,就意味着S(x)>d(x),说明取d不如由L和R贡献。
完结撒花~~~
#include<cstdio>
#include<iostream>
#include<cstring>
#include<cstdlib>
#include<algorithm>
#include<cmath>
using namespace std;
typedef long long LL;
const int _=1e2;
const int maxn=1e5+_; struct point{int x,y;}p[maxn];
LL multi(point p1,point p2,point p0)
{
LL x1,y1,x2,y2;
x1=p1.x-p0.x;
y1=p1.y-p0.y;
x2=p2.x-p0.x;
y2=p2.y-p0.y;
return x1*y2-x2*y1;
}
int top,sta[maxn];
int main()
{
freopen("a.in","r",stdin);
freopen("a.out","w",stdout);
int n;
scanf("%d",&n); sta[++top]=;
for(int i=;i<=n;i++)
{
p[i].x=i,scanf("%d",&p[i].y);
while(top>&&multi(p[sta[top]],p[i],p[sta[top-]])>=)top--;
sta[++top]=i;
}
p[n+].x=n+;
while(top>&&multi(p[sta[top]],p[n+],p[sta[top-]])>=)top--;
sta[++top]=n+; int L=,R=;
for(int i=;i<=n;i++)
{
while(L<top&&p[sta[L+]].x<=p[i].x)L++;
if(p[sta[L]].x==p[i].x)
printf("%lld\n",LL(p[i].y)*100000LL);
else
{
while(R<top&&p[sta[R]].x<=p[i].x)R++;
double d=(double(sta[R]-i)*double(p[sta[L]].y))/double(sta[R]-sta[L]) +
(double(i-sta[L])*double(p[sta[R]].y))/double(sta[R]-sta[L]);
d*=;
if(fabs(d-ceil(d))<=1e-)d+=1e-;
printf("%.0lf\n",floor(d));
}
} return ;
}
bzoj5483: [Usaco2018 Dec]Balance Beam的更多相关文章
- [bzoj5483][Usaco2018 Dec]Balance Beam_凸包_概率期望
bzoj5483 Usaco2018Dec Balance Beam 题目链接:https://lydsy.com/JudgeOnline/problem.php?id=5483 数据范围:略. 题解 ...
- BZOJ5484: [Usaco2018 Dec]Sort It Out
5484: [Usaco2018 Dec]Sort It Out https://www.lydsy.com/JudgeOnline/problem.php?id=5484 Sol. 考虑没有在被喊叫 ...
- 洛谷P5155 [USACO18DEC]Balance Beam(期望,凸包)
你以为它是一个期望dp,其实它是一个凸包哒! 设平衡木长度为\(L\),把向右走平衡木那个式子写一下: \[dp[i]=\frac{dp[i+1]+dp[i-1]}{2}\] 然后会发现这是一个等差数 ...
- Luogu5155 [USACO18DEC]Balance Beam
题目链接:洛谷 这道题看起来是个期望题,但是其实是一道计算几何(这种题太妙了) 首先有一个很好的结论,在一个长度为$L$的数轴上,每次从$x$处出发,不停地走,有$\frac{x}{L}$的概率从右端 ...
- [USACO18DEC]Balance Beam
题目链接:这里 或者这里 答案是很显然的,记\(g(i)\)为在\(i\)下平衡木时的期望收益 那么\(g(i)=max(f(i),\frac{g(i-1)+g(i+1)}{2})\) 好了做完了 T ...
- 题解-USACO18DEC Balance Beam详细证明
(翻了翻其他的题解,觉得它们没讲清楚这个策略的正确性) Problem 洛谷5155 题意概要:给定一个长为\(n\)的序列,可以选择以\(\frac 12\)的概率进行左右移动,也可以结束并得到当前 ...
- BZOJ5487: [Usaco2018 Dec]Cowpatibility
Description 研究证明,有一个因素在两头奶牛能否作为朋友和谐共处这方面比其他任何因素都来得重要--她们是不是喜欢同 一种口味的冰激凌!Farmer John的N头奶牛(2≤N≤50,000) ...
- Luogu5155 USACO18DEC Balance Beam(概率期望+凸包)
假设已经求出了在每个点的最优期望收益,显然最优策略是仅当移动一次后的期望收益>当前点收益时移动.对于初始点,其两边各存在一个最近的不满足上述条件的位置,因此从初始点开始随机游走,直到移动到这两个 ...
- p5155 [USACO18DEC]Balance Beam
传送门 分析 https://www.luogu.org/blog/22112/solution-p5155 代码 #include<bits/stdc++.h> using namesp ...
随机推荐
- 转载:lua和c的交互
extern "C" { #include "lua.h" #include "lualib.h" #include "lauxl ...
- Java:Session详解
以下情况,Session结束生命周期,Servlet容器将Session所占资源释放:1.客户端关闭浏览器2.Session过期3.服务器端调用了HttpSession的invalidate()方法. ...
- 数三角形(codevs 3693)
题目描述 Description 给定一个n×m的网格,请计算三个点都在格点上的三角形共有多少个(三角形的三点不能共线).下图为4×4的网格上的一个三角形. 输入描述 Input Descripti ...
- PXE+Kickstart 自动安装CentOS系统
PXE (preboot execcute environment) 依赖服务 dhcp tftp file server (yum repository) 准备TFTP服务器 如何配置TFTP服务 ...
- hdu 1827 有向图缩点看度数
题意:给一个有向图,选最少的点(同时最小价值),从这些点出发可以遍历所有. 思路:先有向图缩点,成有向树,找入度为0的点即可. 下面给出有向图缩点方法: 用一个数组SCC记录即可,重新编号,1.... ...
- Spring实战Day5
3.3自动装配bean的歧义性 产生歧义的原因 找到多个符合条件的组件,如下注入talent时会有两个满足条件的组件 解决方法 标示首选的bean,但是同时标示两个或多个同样会存在歧义 自动装配标示P ...
- centos下开启htaccess
不知道原本 centOS是否默认支持 .htaccess 可能是因为我总弄配置文件无意中给搞坏了 今天要用到就查了下怎么开启 想要顺利开启需注意以下几点, 这几点都是在httpd.conf 这个配置文 ...
- Delphi 的内存操作函数(1): 给字符指针分配内存
马上能想到的函数有: GetMem AllocMem ReallocMem FreeMem GetMemory ReallocMemory FreeMemory New Dispose NewStr ...
- virtualenv 配置python3环境
virtualenv -p /usr/bin/python3 py3env source py3env/bin/activate pip install package-name
- Oracle创建JOB定时任务
--- DECLARE JOB NUMBER;BEGIN DBMS_JOB.SUBMIT( JOB=>JOB, WHAT=>'CTABLE_T ...