Description

There is a rectangular room, covered with square tiles. Each tile is colored either red or black. A man is standing on a black tile. From a tile, he can move to one of four adjacent tiles. But he can't move on red tiles, he can move only on black tiles.

Write a program to count the number of black tiles which he can reach by repeating the moves described above.

Input

The input consists of multiple data sets. A data set starts with a line containing two positive integers W and H; W and H are the numbers of tiles in the x- and y- directions, respectively. W and H are not more than 20.

There are H more lines in the data set, each of which includes W characters. Each character represents the color of a tile as follows.

'.' - a black tile 
'#' - a red tile 
'@' - a man on a black tile(appears exactly once in a data set) 

Output

For each data set, your program should output a line which contains the number of tiles he can reach from the initial tile (including itself).

Sample Input

6 9
....#.
.....#
......
......
......
......
......
#@...#
.#..#.
11 9
.#.........
.#.#######.
.#.#.....#.
.#.#.###.#.
.#.#..@#.#.
.#.#####.#.
.#.......#.
.#########.
...........
11 6
..#..#..#..
..#..#..#..
..#..#..###
..#..#..#@.
..#..#..#..
..#..#..#..
7 7
..#.#..
..#.#..
###.###
...@...
###.###
..#.#..
..#.#..
0 0

Sample Output

45
59
6
13
 #include<cstdio>
#include<string.h>
int px[]={-,,,};
int py[]={,,-,};
int ans;
bool key[][];
char a[][];
int n,m,x,y;
void f(int x,int y)
{
int nx,ny;
for(int i = ;i < ; i++)
{
nx=x+px[i];
ny=y+py[i];
if(nx >= && ny >= && a[nx][ny] == '.' && key[nx][ny] == false && nx < m && ny < n)
{
ans++;
key[nx][ny]=true;
f(nx,ny);
}
}
}
int main()
{ while(scanf("%d %d",&n,&m) && n && m)
{
memset(key,false,sizeof(key));
for(int i = ; i < m ; i++)
{
getchar();
for(int j = ; j < n ; j++)
{
scanf("%c",&a[i][j]);
if(a[i][j] == '@')
{
x=i;
y=j;
}
} }
key[x][y]=true;
ans=;
f(x,y);
printf("%d\n",ans+);
}
}

POJ 1979 Red and Black (DFS)的更多相关文章

  1. POJ 1979 Red and Black (红与黑)

    POJ 1979 Red and Black (红与黑) Time Limit: 1000MS    Memory Limit: 30000K Description 题目描述 There is a ...

  2. poj 1979 Red and Black(dfs水题)

    Description There is a rectangular room, covered with square tiles. Each tile is colored either red ...

  3. 【POJ - 3984】迷宫问题(dfs)

    -->迷宫问题 Descriptions: 定义一个二维数组: int maze[5][5] = { 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0 ...

  4. POJ-1979 Red and Black(DFS)

    题目链接:http://poj.org/problem?id=1979 深度优先搜索非递归写法 #include <cstdio> #include <stack> using ...

  5. poj 3009 Curling 2.0 (dfs )

    Curling 2.0 Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 11879   Accepted: 5028 Desc ...

  6. 【POJ - 1321】棋盘问题 (dfs)

    棋盘问题 Descriptions: 在一个给定形状的棋盘(形状可能是不规则的)上面摆放棋子,棋子没有区别.要求摆放时任意的两个棋子不能放在棋盘中的同一行或者同一列,请编程求解对于给定形状和大小的棋盘 ...

  7. 【POJ - 1970】The Game(dfs)

    -->The Game 直接中文 Descriptions: 判断五子棋棋局是否有胜者,有的话输出胜者的棋子类型,并且输出五个棋子中最左上的棋子坐标:没有胜者输出0.棋盘是这样的,如图 Samp ...

  8. HDU 1312 Red and Black (dfs)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1312 Red and Black Time Limit: 2000/1000 MS (Java/Oth ...

  9. Poj1979 Red and Black (DFS)

    Red and Black Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 47466   Accepted: 25523 D ...

随机推荐

  1. python之使用request模块发送post和get请求

    import requestsimport json #发送get请求并得到结果# url = 'http://api.nnzhp.cn/api/user/stu_info?stu_name=小黑马 ...

  2. linux软件的安装。使用rpm、yum或wget下载软件

    介绍 在linux中安装软件一般有一下几种方式: a.通过rpm包安装 b.通过yum在线安装(联网) c.weget url 在线下载软件(只负责下载,不安装) 1.通过rpm包来进行软件的安装和卸 ...

  3. 直接修改HEX修改液晶显示内容的方法

    一先通过HEX2bin工具转成bin文件,可粗略看到字节流对应的内容. 二确定原汉字的扫描方式(美术字是图形方式,不确定扫描方式的穷举各种扫描方式),然后根据字体大小.MSB的位置,利用液晶工具生成汉 ...

  4. 在nginx上部署vue项目(history模式)--demo实列;

    在很早之前,我写了一篇 关于 在nginx上部署vue项目(history模式) 但是讲的都是理论,所以今天做个demo来实战下.有必要让大家更好的理解,我发现搜索这类似的问题还是挺多的,因此在写一篇 ...

  5. 用NPOI从Excel到DataTable

    NPOI功能强大,不用装Excel,就可以操作表格中数据----Excel.Sheet------>DataTable private IWorkbook workbook = null; pr ...

  6. 自动创建xml文档

    自动创建xml文档 import xml.etree.ElementTree as ET print(dir(ET)) #ET里面有Element方法 root = ET.Element(" ...

  7. leetcode410 Split Array Largest Sum

    思路: dp. 实现: class Solution { public: int splitArray(vector<int>& nums, int m) { int n = nu ...

  8. jQuery选择器之可见性选择器

    <!DOCTYPE html> <html> <head> <meta http-equiv="Content-type" content ...

  9. Linux下搭建DHCP服务器

    一.DHCP所需软件包 dhcp-common-4.1.1-34.Pl.el6.centos.x86_64 dhcp-4.1.1-34.pl.el6.centon.x86_64 二.编辑主配置文件 v ...

  10. Types of Security Vulnerabilities

    1)内存空间安全.2)参量级别数据安全:3)通信级别数据安全:4)数据访问控制:5)通信对象身份确认. https://developer.apple.com/library/content/docu ...