题目描述

给出序列 a1,a2,…an(0≤ai≤109),有关序列的四种操作:

1. al,al+1,…,ar(1≤l≤r≤n)加上 x(-103≤x≤103)

2. al,al+1,…,ar(1≤l≤r≤n)乘上 x(-103≤x≤103)

3. al,al+1,…,ar(1≤l≤r≤n)变成 x-al,x-al+1 ,…,x-ar(-103≤x≤103)

4. 求:

aaarticlea/jpeg;base64,/9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAAEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQH/2wBDAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQH/wAARCAA4AGQDAREAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD+/igAoAKAPxa+Pf8AwW9+CvwA/wCCgmkf8E09T/ZM/bE8bftFeL9N0nWfha/h2y/ZG8HfDH4v6Tq2gXWs2178NPiF8dv2wvg3pmsMs+m6z4aGm6nDpWs3fjHRtY8NaTpt9qEdqs2HDtWpxRVz/DZZhMQsbw3PH/2rl+JlhaOOjhcDGnXlmGEw6xVSWY4PEZbVp53Slgfb4ilk31vG5hh8L/Z2d08NrndOnw9g8lzDMcTRjgM+lh6OX46iq9XCfXa+Klgll2MrKgoYDG08aqeEnSxjpQlXxWWKhVq08xyqpX+pv+Gyv2kP+kRv7f8A/wCHK/4JLf8A00utzI8z+J3/AAUk+Mvwi0C78S+LP+CPH/BUrVNOsoJLmeD4Z+HP2AfjNrrRRq7MLbwv8HP+Chfj3xHfTYjbZbWWlT3MhwscTMyg89bFUcOm6vtlFfFKGGxNWEVs5SnSozjGC3lOTUIq8ptJNrejh6ldqNN0bt2Sq4nDULvVf8v6tPfldu70Tvv7N/wT6/4KCfBH/gpL8DNX+OXwV8OfFHwFB4W+IvjD4T+P/hd8cPC2j+C/jF8N/iD4Onsxqnhvx74R0XxX4wstEv7jT9R0vWrG3XXLmY6XqFqt/FZ6rHf6ZD6+Iy+VDLcizelisFjsu4hy6pmeW4zL8QsTQnRo5lj8rxFCpOMUqeKw+Ky+sqlFOSdCeFxVKpUw1ehWn5lLGc2Z51k9fCY3A4/I8ThMPjMNj8NLDVakMZl2FzDC43DU5y9pUwVaOInhoYicKaljsJmGHUW8PKb+5a4DsCgAoAKACgAoAKACgAoA/Ev/AILj/wDBKe2/4KZ/sx2Gq/Cq+XwL+2d+zZqMvxT/AGSPixp942ia1p3jbSZrfV5vh/eeI7dorzS9E8bXOj6abHVI7mJvC3jWw8KeMYna307UbC5+dzB5xw9nOW8fcKqt/b+Qul9aweFVJ1c/yWhWq4iWXexxClhcVmOXVZ1MwyCGNi6FTE1MwyKtXwmWZ7m2KPey2eVZpl2ZcH8SxozyDPqdSi62JhUnSynMatCphaeYyVGNSv8A2fiaU3gc/wANRp1nicrnHF08JiM2y7JZU8f/AIIUf8FWLj/go/8As56/4A+Oli/gT9uX9lbUk+FX7WPwv1iyXRNek8TaJdXmg23xMtPD0iwy6fYeLbzSNQtPEulJbwr4W8fWHiLw+1tFpI8N3d1+iZlHJ87ynLeOuFfYT4d4ghRqSw+FlVlRyPNq9B4qeWqNeUsTTy3G0ebMOHKuJlVnVy11Mtq4zFZxlGe1I/B4CGa8P5vmHA3EsqrzrJVKWCxeIlTlUzvJqVSNGOO9vRnPDYzHZfUq0sHnNfB1J4fESq5Zn1OnhsDneW4SP7mV86e8eaaB8IvAHhT4nfED4ueGtEh0Txh8UdJ8JaX8Q7rTRHa2Xi6bwUurW3hfX9csooVjvPE+maZq0+gf8JC7HUrvw5b6JoeoTXGn6JoENsYa+EwmKwFB8mCxWZ1M6eFSiqNHNsThMNgsxx+HjFJ06+bYbAZZTzJtyjWeW4CrCNOusZVrle2IxGDxVVJ4nB4CplcMRyx9vWyz648dhMBiKzi6lXCZVi62ZYnKsO5Klgq2cZ5UpwcsbVZ6XQAUAFAHI+JfiD8P/Bd9oWmeMvHPhDwpqPie6ex8M6f4l8TaJod94hvkktons9CtNUv7WfV7pJbu1je3sEnmWS4tkZA80QaYzhKq6EZxlWjRliJUYyTqxw8ZOMq7ppuaoxkuWVVrkUrpzundyThRniJpxw9OapzryTjRhUdOrUjCdVvkjN06NWoouXM6dOrNJxhOR0ljfWOp2VpqWm3lrqGn31vDd2N/Y3EN1ZXlpcRrLb3VpdQSSQ3FvPEVlhnhd4pI2V0dlO9tJQnTlKE4yhODalCUXGUWrpqUWrxatqnrv1TblNO9mnZyi7O9pRk4ST10cZRcZK91JOLbkm3aqRlPTpr2406wuNSsk07UJrO1mv8AT47tb6OxvZIEe6s475YYFvEtZi8K3SwRLcKolWFA20a140oVq0KFV16MKtSNGu6bpOtSjOUadV0nKbpOpBRm6blJwcuRybi2ZUZVZ0aU69JUKsqcJVaKqKqqVRxTnTVWMYqooPTnUUpaNJalysjUKACgD+ZnWP2H/DfxW/4OG/DX7aP7Cnj3WvhVL8DPBmq+FP8Agp14m8OaVYXXwn+LfjPWdH0keBPgBZ5nS2174w6t4aOneIvjcUgudO8AaHpXwn8TXVxZ/Fe9sobh+HVskpeImZRtV4F4hhi8synJ6itSzjjyGJx0eIM2yNqT+q5Hwvmv1PM8yzbDKmsTx1HP+FcJPHxzHxDeXHHSlm2F4Iyqo/ZcZZRjMuzqeZ01fEZTwJGHLltHPE2lVzHiLBvG5Lw1gq/Pi/8AU/E1s5xk8NlWWcB0Md/TNSAKACgAoAKAP5ePjj8Wda0D9nP/AILxfFn4q3dhqH7TnxD+J/xY/Y4+Bvw91ZU1PxB4E/Z307wF4O+H3wUk07wvMLm70T4ZX1x8SvEH7SfjzxV9lh8KTWGvX/jHxJqS2Gn2zweJSyelxH4f+HPCKxUI4zxX8SIYXj/M6iVKeSSzTx4zDwzhQzLGwTWXYfgvgbKssXCv1qVCm89zlYzKVLOeK418Z9FTzGnkHiJnPE86M55T4XeH+T55wvl86ccTQzqvgPCul4pZ/VyvDQpylmeL4w4unjeGM5jRjia/1Phehk+YzWB4YrQwv6u/Bz4u/CX4aWP7DX7IHwn1T4j+G9CsdJl+HXgLVtH8E+DtX8DfETwN+z98NfHPhy70y717U7/UdRsfB2t23gex8Waf498Haa+BP8PtN1fxBov/AAnugWWofdZnmtbjHjPijPZUI4Z4vK+IuPauV1nTo0ZZXmObcI4TCSoewnPEUZ5d/wARH4UzLLsPN4bB4yjWxGA9tiMdk3EuR4f8+yfLnwxwbkuU4jFxxuKoYvhbhTEZzhf3klxHLCZnnmaOUa0YYfEYjNJcH8ZZJm9BRr5hl2Jwmd5hHDYehTyrPp/pVXgHvhQAUAFAH47/APBSD/go38Ofgp488EfsOeBv2n/gT+z1+0Z8b9Cude8S/GL40fEz4b+C/C/7LvwIjum07xD8Y7i28feItF03xZ8VNbMsugfAP4Zk3Da94wM/jTxTaD4beFPFLzeZhqeG4kzPMMllmVbAZJktPD1uM8xy7F08PnLp4qLqYHg7hqtapOhxNxDSmqmKzWNKpDg7hupV4lxUZZviuD8rzD0KkqmRZZh86nl1PMcwzGvUwnCuVYyhWqZbisZSdRYnPuIPZSpyhwrkLg54mj7ajiOJs2jQ4TyqtTlPPs3y/uf2eP2v/wDgjv8AsufB/wAJfBP4R/8ABQL9iLTPCfhWC7ke81T9sv4A6v4o8V+JNXv7nWPFnj3xz4kvfiU+o+LPHfjrxBeX/ifxn4q1aWbVNd8Q6hqOpXkzSTYH0GNxixc6MaOEwmXYHBYTC5ZlGUZdR+r5VkuT4GkqGXZRleG55vD4HAYeEKNGMp1K9RqeJxdfEY2ricTU8TB4WWGWJq4jF4nMsxzHF18xzjN8dOFTMc4zXEycsXmWOqQhTputXfLGnRoU6WDweFhhsuy7DYfLsNhMJDp/iF/wWT/4JJfC/Qr/AMQeK/8AgpH+xvLaadDJPc2Hg/8AaG+GXxF8TtHGjufsfg34deJfFXirUpGEbCKDTtGuZ5pMRQxvKQh8qviqWHg5zVeaje6w+FxWKnddOTC0a0k2rNJq7TT1V2ejRoVK8uSDpRelnWxGHw8dW0nz4irShb3Xd81l1fV0P+CcH/BRPw1/wU6t/jj8efgRoWvWH7J3gnxlZfB/4O+NPF/h+68PeJfjP4z8PWcmsfE74kafoeo7dS0P4f2Y1zwt4W8G2WrQ2niG71Ow8ZXviPS9Nu1tNHt/Vp5ZjsNw/luc5vReBxXEeIx2KybKZVcNXq4XhnKsTVyinmuNr4StWoLHZ9ntDO8M8uhVrwwGXZJluMjiXiM0xmGpebUzDA4jPMVk+VV1jaWQ4PDxzzM6anDC18+zaNDHUMlwlDEUqWLpPh/J6eCx+MxlenSjmFXiSlh6GGWHyulmGL/TeuI7AoAKAKj2FhJNcXEllaST3VqtjdTvbQtNc2StMy2dxIyF5rVWnmZbeRmhDSzEJl5GZOMXCpTaThVadWDScKjUXBOpFtqbUfdTldqLcb2vdqUlKElJqVO/s5JtSp3lGT5He8LyhGT5WryjFtuUU34B4u/Zp8H+L/2g/hb+0VceKPG+j+JvhV4D8U/DnQ/Dmg6ppdh4RvfDXirxV4I8Xatb31udEm1mza81fwB4WGqLoGt6TBrukaVZ+G/EUOoeHG1HSrisvlLL8dn+PhOWIq8Q4TIcJjIYq1alTjkNPjanhZ4eLSlfFPjXHYrHUq8q2HrZllvC2awpU8yyXBYozxlOOMwWVYCX7mjlOPx2YYZ4f91KWIxsclpynWWsZTwuHyipgMDVhGFXDZZnXFOAjOVLNa8o/RVIswr7xT4X0vXNC8M6n4k0LTvEXif+0f8AhGfD99rGnWmueIf7JtHvtW/sLSbi6jvtX/suyje81H7BBP8AYrRXuboxwq0hKf76pWo0v3tXDYR4/EUqfv1KGBjisLgnja0ItypYRYzG4PCPEzSorFYnC4Z1HXrUoyU2qcKdWo1CnVxEcHSqT92FXFyoYnEwwtOcnyzxEsPhMViI0It1XQw+JrKLp0atQ3eACc8DqewHPJ54+6e/Y8nBym0k22kkm227JJXu227JLld230eujbe+2v8ATS6+X56tpt+San8ffgXo2j+FfEOpfGD4cW+heNvH1l8KfB+tjxp4en0jxN8T7/X7jwxZ/D/Q9Rt9RltdS8XT+IbW40BfD1rNJqq63BcaVJarfRSw06P+04rLcFh/32KzfB4zMcpw9P36uZZfgMrxWcY7HYCCbeLwmEyrB4rM6+Ioc9Gnl9DEYyc1Qp1KiKy+r0syr1/3NLJ6tChm06vuLLa+IxGGwuHoY7ms8LWr4jF4WjRpVlGpUq4jDwhFyq07+Q/FT9gn9gL4yeMNd+Kfxw/Yn/ZG+KfjvWIbWXxL8Rvip+zd8E/G3jDVbfSdOh0+yk13xf4t8EarrF9Dpel2UFlavqGoSpZadbQ2sLR2sCJXLClgsvo4ipTp4XBUHUxGNxc4Qo4ei6tSU62KxmIlFQg6lSXPVxGIqPmlJzqVakpc030Sq4rFyw9KdTEYqVOFPCYWnKdWtKFL2lR0sNh4OU3GHtKlR06NNcvtJ1HGLnKbfh9r/wAE+f8AgjVe+HvC/i6y/YZ/4JrXfhbxrqWl6N4M8TWv7Mv7KM/h7xbrGtXUllouleF9ai8Cvp+v6lrF3FJaaXYaVc3V3f3SSW9nFLMjqe106ixGGwrpzWJxlGeIweGcJfWMVh6eU188qYjDUbe0r0YZNhsRnE6tKM6ccpo18ylP6lSq4g5VODpYuupxdHA1pYfHVlJOlg8RHNKWSyoYupdww1aOb1aWUypVpRqLNKlLLnF4ycaUuzm/4JZ/8ErraGa4uP8Agm3+wRBbwRSTTzzfsd/s3xQwwxIzyzTSv8NVSOKNEZ5JHYIiKzMwCsTjUqU6NOpWrVIUqVKEqlWrUnGFOnThFynUqTlJRhCEYuUpSkoxim5OycnpCE6k4U6cJVKk5RhCEIuU5zk+WMIRjeUpSekYpNt6K71Ppr4FeDPgD4C+FXhfw9+zD4S+Efgz4MLFfaj4L0T4FaD4J8PfCoQapqV1f6jf+F9N8AWln4WEWp6pNd3t9daVDsvNSlurm4kku3mkPZiamNqPDrGVMTN08HhFhViZ1pOGX1KEcRgVh1Vk3HB1MPWjXwip/uJUKsatHmpzU3y4elhKcsXLC08PCc8biY46WHhSjKeY4So8vxixbppOWNwtTCfUsSqzeIo1MO8LVcZ0XA9crmOg57Q/F3hLxPdeIrHw14o8PeIb3wlrL+HPFdnoet6Zqt14Z8RJZWeovoPiK3sLu4l0TWUsL+xvn0vUlgv1sruzu2g+zzwSuQ/eUKeJp/vMPWnXp0cRD3qFWphq08PiYU6sW4Tnh69OdCvGMnKlWhOlUSqRkgmnTrSw9T3K8aOHxEqE/drRw+JjOWFrypS99UcTGnOWHqtclWMZunKajJvoaACgAoAKAPyY/ax8X/Bfwl/wU3/4JktrXin4Z+GfHmpXP7UllqbaprfhPR/GOoaXefAu60/wnaX5u7u21i7sbzVZ7uy8OW9wXt59SlurXS0e7eZGfCdqnF/GmGwdput4OcSUK9DDWk6uc1fGL6OFbDUa1Kld1Myq5Vg5VqFOcZYueW4aVSmpYWi5J8RWp8GZFiMU1COG8W+Dq9OvX92NDKqXhf8ASHp4utCrUdqWAp47E0YYmopLDQxtelGrJYipFy9R+OPwn+Mmq/E/xL4p+MGga/8AtT/szXj2L6F8Avhtr1j4Cn8D2kNhb2+qj4g/CXUL7StK/a60jUbiK+1jXLTxn8U10u2tJNM0LwP+zLr/AImtm8QXXJglh8NGu86oPF4h4vEVsLmzwtTM8uwWDlXq1MLh6nDNOnVqYetl1GFCVLOsJhOJeIMTm8Y4vLKOQ4KcsLHoxDr1fYrKK/1OEcNRp4nAxxKwGPx2Mg6iqYihxFKdNQjjJ1nReU1a+QZNRy1VY5xmeb1pU7eUfHn4j/C34ifH/wD4Jc/CzwxBd+GvhgnxP+JnxzTw9f8Aw98W+BZlvPgT4Pg+D3w8+G8nw613wzoPiHw3q2jfFX49+D/FY8O6h4e0+fw7pvgTUfEWo2tj4e0fUNSi9TKPrGJ45xuPxGJhi8TlPh1xVmeU4hYyliqmJ4i4rq4Lh54qGJ9tUjWhS8PI+KlHM+abq4PF1sHhMX7LH16GGn52YRoYbgfE4KjQ+qYfNOOeCOHM0w8sP9Sp4LKcnqZp4jUppSjShGWM4q4M4GwGX0qPNHOKGbWy761h6k5ne/Ej4U/E2D4k+LPFn7Uvg3xH+2D8CbnxDdar4J8IfDrEfhj4S+HPtBnstN8e/sggQw/tC/8ACPQW0N63j268WfGX4jX/AIpEN58NPgL4Lt8w152Wzo4GlRlmUJTzajVlUhxE8NWzHBwqLEVauEngsqoU61fhbF4WVSng8vxuW5fm2ZuCxeNzrjDB4CUMHDuxka+KnUWXVY08vqUKNKrkixFPLsXXlHDxo4x184r1qVHPMLjpQrYrGZbmGOyXJ6WHqYbA4XIs0zGlPHVovjF+0VqUX7Uv7A3gXwF4w0qx+FfxcPjXxtrHhfWfheUurzwf4E0J/B0dtBaeIvDg8Z+HfH6/FL4q/BS08NaFoln4b1TwX4a0f4xa38Qra70Oyki070MqpVsTxPn2Gxs44pYDhGvnFGvSxNCvz5rnOIw1LIXl2Ow1WX1lZvkFHjzOs4zN4nF5THIsjw2XujSxed0Mwlx4x4ejwnhsTgqbw0qvFOX5BUhWpSw1HD4TAvG5rmH13AYulRjRjga/DWG4dy3LlGGa4riziPh+tltOp/ZWIwlaX4kfCn4mwfEnxZ4s/al8G+I/2wfgTc+IbrVfBPhD4dYj8MfCXw59oM9lpvj39kECGH9oX/hHoLaG9bx7deLPjL8Rr/xSIbz4afAXwXb5hrz8tnRwNKjLMoSnm1GrKpDiJ4atmODhUWIq1cJPBZVQp1q/C2LwsqlPB5fjcty/NszcFi8bnXGGDwEoYOHZjI18VOosuqxp5fUoUaVXJFiKeXYuvKOHjRxjr5xXrUqOeYXHShWxWMy3MMdkuT0sPUw2BwuRZpmNKeOrN+MnxY+MnjL9o79jn4T/ALNfxi/4V74H+NXgT4yePPE0a/CXQr3VtB+Gnwq8JDS73XrnRviFoEOreH/EEfxP+JHwR8N6X4bvrHSRpWlw/EjS/EejXOtXWj3Gk6Qw2Y43NOMcLLMIU/qHAOIznD5lbDZpg8PxNnPEnCGC4FqwqYbEQjmVPOsBV49znHKWPq4XM8nyGjhcrqZdmFatn0cnXy/CZJw/i6OBnKVXj3AcM1cDavgKs8opZDxfmXEMamFrYaM8vjkq4ZwuU4etClGrhOIM/wAmxGOw+NyvC4nJMV0nxh+D37VOo3HgWfxP451f9or4TaD8PvDOhfFD4N/C7W7L9mL4g/Ebx/plvMnij4kx+I7LWjbeNdP8X3DRm3+At18Vvgx8NdL0w6pZ+L/FXxBs7uw0SHTEzy6pnGd4utk86mUYzHSrZDlvtlmeG4fwLioRy7M8rxjwtLiynKU608dmeZVsTThgVQoYDgnFZrD+05rDxxkMsy7DUczhRzPD0qkc1zCVGeEq5tUdSU4VsDj8LHF1uGqmGhSprC0cuwscZiMfP2tfinL8t9phX5t+0T8Z9S+HP7JHhWP9h+yt/wBnvxVb/HT4JfAbwn8MfEf7P58IR6J41+KnxQ8I+CoPDGqfDTxJoGgWi+ENKj8ZT+O/E+t+Citr4n8J6Jql58PPiBDFexeLk0pvE5jxTwNgXmEMbgc/zeOFnUh7R1HkPDeGxHFnFrlh8VHD47LamW+HXCvGFTLcpxdDLsfh84lw3XxNKOW0a+WYvG1DA5FxtiZ4KeFxmUcN5zmcYylS9pPP8xwOOyvhF4fH0J4zLsfWzzxAx/DOT4jNubOMuqUK+cUHTr5n7HEUfXv2Rfjj4y+IXxt/bP8AhX4s+IV7490v4LfF3QfBPgG81nw14b0jxUmnad8KPhre+P73Wj4M8MeG9EtfD918SPEHiHRvAaa1ZJ4j1aLQfFlzZalrehadHfQTlc6WY8K4bO4wSliOIeLMNhp875/7DyriPN+EMvpY7mcKVfOo59wXxhicZ9Qo0KVDh3F8G4nHYHD18xwuJxZj3UwfEiymVSLVPhPhnE4+nCjONGPFOPhjOJMyeXyc69SllD4P4q8OJ4ajjMVia8c4qcRYeGNxE8LjKVH75qDYKACgAoA+ffFv7PNj4u8Sar4kk+Mn7Qfh59VnSdtG8JfGHxFoPhuwKQxQ+VpWj2yNBp8DiLzXhiOwzPLJwzGsqNJUISgqlWrzVa9XmrVHUmvbV6lZ04yk7qlS5/Z0IbU6EadJNqCZpUqe0lGThThy06VO1OChFqlTjTU5JPWpUUVOrPedRynL3nJv1TwX4OtvBfhzS/Dq654n8Vf2U93JBr3jjXbnxN4ome7uLmZ2u9cvlFzOYkuHtLbODDYiO0UmJTnpqVOdxfJTg40YUL0oKHPCLi252d5zqShCdSTvzzjCTTlGLOenTVP2vv1JqpV9q1Um5KElFQSpJ6Qgkm1FbOU3duUpHjuufs12Gu61q2tN8bv2kNKbVdQvNQbTND+NXiXTdF09ru4lnNnpOmxI0Vhp9uZPKs7OMmO3t0ihQ7UBPNRpKhShSU6tVQio+0rVJVKsrX96dSXvSk+snrtrudFSftJym404XUVy04KEFyxUbxgtE5WvLvJt6N3PcPDXhy38NaDomhDUtZ186HaLaW+t+KdSm1zxJd4Vke61LWbpftN7ezqds9y+HkXCtlQc9VWp7Wo6nJSpt0qdFqjBU4uFOFKPwp71ZUYVazb/AHlb97K81zHNSpKlB0/aVaq9tVrKVabqSUqtWtO0XLaFJVpUqEf+XWH5aMXyqV/D9c/ZrsNd1rVtab43ftIaU2q6heag2maH8avEum6Lp7XdxLObPSdNiRorDT7cyeVZ2cZMdvbpFCh2oCeWjSVClCkp1aqhFR9pWqSqVZWv706kvelJ9ZPXbXc6ak/aTlNxpwuorlpwUILlio3jBaJyteXeTb0bue4+GfD0PhjQdH0JNT1vXTo9ilhHrfifU5ta8SX0asrNPqus3IFzf3UzIjTzy4aQrGWGUGeqrVdWbnyU6d4UYONGCpwfsKSpQk4p2c5LmnOTu5ValWbfNKTfNRpKjBw9pUqXqV6nNWm6k061apVcFJ6qnDmVOjDanRhSpq6jr5h8QPgdafELxB/wkE3xU+N3hB/sVtYnSfh/8Udd8KeHyLdpiLv+ybFXgF7P5uLm5GHmWOEOMpuPLTpKlPETVSrP29WNVxqVHOFLlo0aPJh4t/uqUlS9rKmm061StUupTZ0zqc8KUOSnH2UJQUoQUZ1E6tSrzVZJ3qTXPyRlLVUo06d2oJnW/Dv4eW3w60a60WLxd498arc6k2pjUviP4tv/ABhrNtI1vb24tbPUdRUS21jGIBNFaINkdxLczK2+WQ10yqc0KMOSlH2KmlUhTUas+dzu6k07zajOVOLe1KTp6xcr88aajOrPnqS9qqUXTlNulH2UpSi4U3pGTk1Kb3lKNN3vFM75Ioo2leOONHmYPM6IqtK6okavKwAMjLHGiBnLMEVEB2qM5rRWWiu3ZbXe7tfd9Xu+rb1NPPytfyTbS9Ltu2123q2230AFABQB/9k=" alt="" />

(即求:al+al+1+al+2+…+ar(1≤l≤r≤n)

所有操作均模 109+7

输入格式

第一行包含两个数 n(1≤n≤105)和 m(1≤m≤105),表示序列长度和操作次数

接下来一行包含 n 个数,空格隔开,表示 a1,a2,…,an 。

接下来 m 行,每行为以下 4 种格式之一:

    • 0 l r x ,表示 al,al+1,…,ar 加上 x
    • 1 l r x ,表示 al,al+1,…,ar 乘上 x
    • 2 l r x ,表示 al,al+1,…,ar(1≤l≤r≤n)变成x-al,x-al+1 ,…,x-ar 。
    • 3 l r   ,求:

aaarticlea/jpeg;base64,/9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAAEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQH/2wBDAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQH/wAARCAA4AGQDAREAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD+/igAoAKAPxa+Pf8AwW9+CvwA/wCCgmkf8E09T/ZM/bE8bftFeL9N0nWfha/h2y/ZG8HfDH4v6Tq2gXWs2178NPiF8dv2wvg3pmsMs+m6z4aGm6nDpWs3fjHRtY8NaTpt9qEdqs2HDtWpxRVz/DZZhMQsbw3PH/2rl+JlhaOOjhcDGnXlmGEw6xVSWY4PEZbVp53Slgfb4ilk31vG5hh8L/Z2d08NrndOnw9g8lzDMcTRjgM+lh6OX46iq9XCfXa+Klgll2MrKgoYDG08aqeEnSxjpQlXxWWKhVq08xyqpX+pv+Gyv2kP+kRv7f8A/wCHK/4JLf8A00utzI8z+J3/AAUk+Mvwi0C78S+LP+CPH/BUrVNOsoJLmeD4Z+HP2AfjNrrRRq7MLbwv8HP+Chfj3xHfTYjbZbWWlT3MhwscTMyg89bFUcOm6vtlFfFKGGxNWEVs5SnSozjGC3lOTUIq8ptJNrejh6ldqNN0bt2Sq4nDULvVf8v6tPfldu70Tvv7N/wT6/4KCfBH/gpL8DNX+OXwV8OfFHwFB4W+IvjD4T+P/hd8cPC2j+C/jF8N/iD4Onsxqnhvx74R0XxX4wstEv7jT9R0vWrG3XXLmY6XqFqt/FZ6rHf6ZD6+Iy+VDLcizelisFjsu4hy6pmeW4zL8QsTQnRo5lj8rxFCpOMUqeKw+Ky+sqlFOSdCeFxVKpUw1ehWn5lLGc2Z51k9fCY3A4/I8ThMPjMNj8NLDVakMZl2FzDC43DU5y9pUwVaOInhoYicKaljsJmGHUW8PKb+5a4DsCgAoAKACgAoAKACgAoA/Ev/AILj/wDBKe2/4KZ/sx2Gq/Cq+XwL+2d+zZqMvxT/AGSPixp942ia1p3jbSZrfV5vh/eeI7dorzS9E8bXOj6abHVI7mJvC3jWw8KeMYna307UbC5+dzB5xw9nOW8fcKqt/b+Qul9aweFVJ1c/yWhWq4iWXexxClhcVmOXVZ1MwyCGNi6FTE1MwyKtXwmWZ7m2KPey2eVZpl2ZcH8SxozyDPqdSi62JhUnSynMatCphaeYyVGNSv8A2fiaU3gc/wANRp1nicrnHF08JiM2y7JZU8f/AIIUf8FWLj/go/8As56/4A+Oli/gT9uX9lbUk+FX7WPwv1iyXRNek8TaJdXmg23xMtPD0iwy6fYeLbzSNQtPEulJbwr4W8fWHiLw+1tFpI8N3d1+iZlHJ87ynLeOuFfYT4d4ghRqSw+FlVlRyPNq9B4qeWqNeUsTTy3G0ebMOHKuJlVnVy11Mtq4zFZxlGe1I/B4CGa8P5vmHA3EsqrzrJVKWCxeIlTlUzvJqVSNGOO9vRnPDYzHZfUq0sHnNfB1J4fESq5Zn1OnhsDneW4SP7mV86e8eaaB8IvAHhT4nfED4ueGtEh0Txh8UdJ8JaX8Q7rTRHa2Xi6bwUurW3hfX9csooVjvPE+maZq0+gf8JC7HUrvw5b6JoeoTXGn6JoENsYa+EwmKwFB8mCxWZ1M6eFSiqNHNsThMNgsxx+HjFJ06+bYbAZZTzJtyjWeW4CrCNOusZVrle2IxGDxVVJ4nB4CplcMRyx9vWyz648dhMBiKzi6lXCZVi62ZYnKsO5Klgq2cZ5UpwcsbVZ6XQAUAFAHI+JfiD8P/Bd9oWmeMvHPhDwpqPie6ex8M6f4l8TaJod94hvkktons9CtNUv7WfV7pJbu1je3sEnmWS4tkZA80QaYzhKq6EZxlWjRliJUYyTqxw8ZOMq7ppuaoxkuWVVrkUrpzundyThRniJpxw9OapzryTjRhUdOrUjCdVvkjN06NWoouXM6dOrNJxhOR0ljfWOp2VpqWm3lrqGn31vDd2N/Y3EN1ZXlpcRrLb3VpdQSSQ3FvPEVlhnhd4pI2V0dlO9tJQnTlKE4yhODalCUXGUWrpqUWrxatqnrv1TblNO9mnZyi7O9pRk4ST10cZRcZK91JOLbkm3aqRlPTpr2406wuNSsk07UJrO1mv8AT47tb6OxvZIEe6s475YYFvEtZi8K3SwRLcKolWFA20a140oVq0KFV16MKtSNGu6bpOtSjOUadV0nKbpOpBRm6blJwcuRybi2ZUZVZ0aU69JUKsqcJVaKqKqqVRxTnTVWMYqooPTnUUpaNJalysjUKACgD+ZnWP2H/DfxW/4OG/DX7aP7Cnj3WvhVL8DPBmq+FP8Agp14m8OaVYXXwn+LfjPWdH0keBPgBZ5nS2174w6t4aOneIvjcUgudO8AaHpXwn8TXVxZ/Fe9sobh+HVskpeImZRtV4F4hhi8synJ6itSzjjyGJx0eIM2yNqT+q5Hwvmv1PM8yzbDKmsTx1HP+FcJPHxzHxDeXHHSlm2F4Iyqo/ZcZZRjMuzqeZ01fEZTwJGHLltHPE2lVzHiLBvG5Lw1gq/Pi/8AU/E1s5xk8NlWWcB0Md/TNSAKACgAoAKAP5ePjj8Wda0D9nP/AILxfFn4q3dhqH7TnxD+J/xY/Y4+Bvw91ZU1PxB4E/Z307wF4O+H3wUk07wvMLm70T4ZX1x8SvEH7SfjzxV9lh8KTWGvX/jHxJqS2Gn2zweJSyelxH4f+HPCKxUI4zxX8SIYXj/M6iVKeSSzTx4zDwzhQzLGwTWXYfgvgbKssXCv1qVCm89zlYzKVLOeK418Z9FTzGnkHiJnPE86M55T4XeH+T55wvl86ccTQzqvgPCul4pZ/VyvDQpylmeL4w4unjeGM5jRjia/1Phehk+YzWB4YrQwv6u/Bz4u/CX4aWP7DX7IHwn1T4j+G9CsdJl+HXgLVtH8E+DtX8DfETwN+z98NfHPhy70y717U7/UdRsfB2t23gex8Waf498Haa+BP8PtN1fxBov/AAnugWWofdZnmtbjHjPijPZUI4Z4vK+IuPauV1nTo0ZZXmObcI4TCSoewnPEUZ5d/wARH4UzLLsPN4bB4yjWxGA9tiMdk3EuR4f8+yfLnwxwbkuU4jFxxuKoYvhbhTEZzhf3klxHLCZnnmaOUa0YYfEYjNJcH8ZZJm9BRr5hl2Jwmd5hHDYehTyrPp/pVXgHvhQAUAFAH47/APBSD/go38Ofgp488EfsOeBv2n/gT+z1+0Z8b9Cude8S/GL40fEz4b+C/C/7LvwIjum07xD8Y7i28feItF03xZ8VNbMsugfAP4Zk3Da94wM/jTxTaD4beFPFLzeZhqeG4kzPMMllmVbAZJktPD1uM8xy7F08PnLp4qLqYHg7hqtapOhxNxDSmqmKzWNKpDg7hupV4lxUZZviuD8rzD0KkqmRZZh86nl1PMcwzGvUwnCuVYyhWqZbisZSdRYnPuIPZSpyhwrkLg54mj7ajiOJs2jQ4TyqtTlPPs3y/uf2eP2v/wDgjv8AsufB/wAJfBP4R/8ABQL9iLTPCfhWC7ke81T9sv4A6v4o8V+JNXv7nWPFnj3xz4kvfiU+o+LPHfjrxBeX/ifxn4q1aWbVNd8Q6hqOpXkzSTYH0GNxixc6MaOEwmXYHBYTC5ZlGUZdR+r5VkuT4GkqGXZRleG55vD4HAYeEKNGMp1K9RqeJxdfEY2ricTU8TB4WWGWJq4jF4nMsxzHF18xzjN8dOFTMc4zXEycsXmWOqQhTputXfLGnRoU6WDweFhhsuy7DYfLsNhMJDp/iF/wWT/4JJfC/Qr/AMQeK/8AgpH+xvLaadDJPc2Hg/8AaG+GXxF8TtHGjufsfg34deJfFXirUpGEbCKDTtGuZ5pMRQxvKQh8qviqWHg5zVeaje6w+FxWKnddOTC0a0k2rNJq7TT1V2ejRoVK8uSDpRelnWxGHw8dW0nz4irShb3Xd81l1fV0P+CcH/BRPw1/wU6t/jj8efgRoWvWH7J3gnxlZfB/4O+NPF/h+68PeJfjP4z8PWcmsfE74kafoeo7dS0P4f2Y1zwt4W8G2WrQ2niG71Ow8ZXviPS9Nu1tNHt/Vp5ZjsNw/luc5vReBxXEeIx2KybKZVcNXq4XhnKsTVyinmuNr4StWoLHZ9ntDO8M8uhVrwwGXZJluMjiXiM0xmGpebUzDA4jPMVk+VV1jaWQ4PDxzzM6anDC18+zaNDHUMlwlDEUqWLpPh/J6eCx+MxlenSjmFXiSlh6GGWHyulmGL/TeuI7AoAKAKj2FhJNcXEllaST3VqtjdTvbQtNc2StMy2dxIyF5rVWnmZbeRmhDSzEJl5GZOMXCpTaThVadWDScKjUXBOpFtqbUfdTldqLcb2vdqUlKElJqVO/s5JtSp3lGT5He8LyhGT5WryjFtuUU34B4u/Zp8H+L/2g/hb+0VceKPG+j+JvhV4D8U/DnQ/Dmg6ppdh4RvfDXirxV4I8Xatb31udEm1mza81fwB4WGqLoGt6TBrukaVZ+G/EUOoeHG1HSrisvlLL8dn+PhOWIq8Q4TIcJjIYq1alTjkNPjanhZ4eLSlfFPjXHYrHUq8q2HrZllvC2awpU8yyXBYozxlOOMwWVYCX7mjlOPx2YYZ4f91KWIxsclpynWWsZTwuHyipgMDVhGFXDZZnXFOAjOVLNa8o/RVIswr7xT4X0vXNC8M6n4k0LTvEXif+0f8AhGfD99rGnWmueIf7JtHvtW/sLSbi6jvtX/suyje81H7BBP8AYrRXuboxwq0hKf76pWo0v3tXDYR4/EUqfv1KGBjisLgnja0ItypYRYzG4PCPEzSorFYnC4Z1HXrUoyU2qcKdWo1CnVxEcHSqT92FXFyoYnEwwtOcnyzxEsPhMViI0It1XQw+JrKLp0atQ3eACc8DqewHPJ54+6e/Y8nBym0k22kkm227JJXu227JLld230eujbe+2v8ATS6+X56tpt+San8ffgXo2j+FfEOpfGD4cW+heNvH1l8KfB+tjxp4en0jxN8T7/X7jwxZ/D/Q9Rt9RltdS8XT+IbW40BfD1rNJqq63BcaVJarfRSw06P+04rLcFh/32KzfB4zMcpw9P36uZZfgMrxWcY7HYCCbeLwmEyrB4rM6+Ioc9Gnl9DEYyc1Qp1KiKy+r0syr1/3NLJ6tChm06vuLLa+IxGGwuHoY7ms8LWr4jF4WjRpVlGpUq4jDwhFyq07+Q/FT9gn9gL4yeMNd+Kfxw/Yn/ZG+KfjvWIbWXxL8Rvip+zd8E/G3jDVbfSdOh0+yk13xf4t8EarrF9Dpel2UFlavqGoSpZadbQ2sLR2sCJXLClgsvo4ipTp4XBUHUxGNxc4Qo4ei6tSU62KxmIlFQg6lSXPVxGIqPmlJzqVakpc030Sq4rFyw9KdTEYqVOFPCYWnKdWtKFL2lR0sNh4OU3GHtKlR06NNcvtJ1HGLnKbfh9r/wAE+f8AgjVe+HvC/i6y/YZ/4JrXfhbxrqWl6N4M8TWv7Mv7KM/h7xbrGtXUllouleF9ai8Cvp+v6lrF3FJaaXYaVc3V3f3SSW9nFLMjqe106ixGGwrpzWJxlGeIweGcJfWMVh6eU188qYjDUbe0r0YZNhsRnE6tKM6ccpo18ylP6lSq4g5VODpYuupxdHA1pYfHVlJOlg8RHNKWSyoYupdww1aOb1aWUypVpRqLNKlLLnF4ycaUuzm/4JZ/8ErraGa4uP8Agm3+wRBbwRSTTzzfsd/s3xQwwxIzyzTSv8NVSOKNEZ5JHYIiKzMwCsTjUqU6NOpWrVIUqVKEqlWrUnGFOnThFynUqTlJRhCEYuUpSkoxim5OycnpCE6k4U6cJVKk5RhCEIuU5zk+WMIRjeUpSekYpNt6K71Ppr4FeDPgD4C+FXhfw9+zD4S+Efgz4MLFfaj4L0T4FaD4J8PfCoQapqV1f6jf+F9N8AWln4WEWp6pNd3t9daVDsvNSlurm4kku3mkPZiamNqPDrGVMTN08HhFhViZ1pOGX1KEcRgVh1Vk3HB1MPWjXwip/uJUKsatHmpzU3y4elhKcsXLC08PCc8biY46WHhSjKeY4So8vxixbppOWNwtTCfUsSqzeIo1MO8LVcZ0XA9crmOg57Q/F3hLxPdeIrHw14o8PeIb3wlrL+HPFdnoet6Zqt14Z8RJZWeovoPiK3sLu4l0TWUsL+xvn0vUlgv1sruzu2g+zzwSuQ/eUKeJp/vMPWnXp0cRD3qFWphq08PiYU6sW4Tnh69OdCvGMnKlWhOlUSqRkgmnTrSw9T3K8aOHxEqE/drRw+JjOWFrypS99UcTGnOWHqtclWMZunKajJvoaACgAoAKAPyY/ax8X/Bfwl/wU3/4JktrXin4Z+GfHmpXP7UllqbaprfhPR/GOoaXefAu60/wnaX5u7u21i7sbzVZ7uy8OW9wXt59SlurXS0e7eZGfCdqnF/GmGwdput4OcSUK9DDWk6uc1fGL6OFbDUa1Kld1Myq5Vg5VqFOcZYueW4aVSmpYWi5J8RWp8GZFiMU1COG8W+Dq9OvX92NDKqXhf8ASHp4utCrUdqWAp47E0YYmopLDQxtelGrJYipFy9R+OPwn+Mmq/E/xL4p+MGga/8AtT/szXj2L6F8Avhtr1j4Cn8D2kNhb2+qj4g/CXUL7StK/a60jUbiK+1jXLTxn8U10u2tJNM0LwP+zLr/AImtm8QXXJglh8NGu86oPF4h4vEVsLmzwtTM8uwWDlXq1MLh6nDNOnVqYetl1GFCVLOsJhOJeIMTm8Y4vLKOQ4KcsLHoxDr1fYrKK/1OEcNRp4nAxxKwGPx2Mg6iqYihxFKdNQjjJ1nReU1a+QZNRy1VY5xmeb1pU7eUfHn4j/C34ifH/wD4Jc/CzwxBd+GvhgnxP+JnxzTw9f8Aw98W+BZlvPgT4Pg+D3w8+G8nw613wzoPiHw3q2jfFX49+D/FY8O6h4e0+fw7pvgTUfEWo2tj4e0fUNSi9TKPrGJ45xuPxGJhi8TlPh1xVmeU4hYyliqmJ4i4rq4Lh54qGJ9tUjWhS8PI+KlHM+abq4PF1sHhMX7LH16GGn52YRoYbgfE4KjQ+qYfNOOeCOHM0w8sP9Sp4LKcnqZp4jUppSjShGWM4q4M4GwGX0qPNHOKGbWy761h6k5ne/Ej4U/E2D4k+LPFn7Uvg3xH+2D8CbnxDdar4J8IfDrEfhj4S+HPtBnstN8e/sggQw/tC/8ACPQW0N63j268WfGX4jX/AIpEN58NPgL4Lt8w152Wzo4GlRlmUJTzajVlUhxE8NWzHBwqLEVauEngsqoU61fhbF4WVSng8vxuW5fm2ZuCxeNzrjDB4CUMHDuxka+KnUWXVY08vqUKNKrkixFPLsXXlHDxo4x184r1qVHPMLjpQrYrGZbmGOyXJ6WHqYbA4XIs0zGlPHVovjF+0VqUX7Uv7A3gXwF4w0qx+FfxcPjXxtrHhfWfheUurzwf4E0J/B0dtBaeIvDg8Z+HfH6/FL4q/BS08NaFoln4b1TwX4a0f4xa38Qra70Oyki070MqpVsTxPn2Gxs44pYDhGvnFGvSxNCvz5rnOIw1LIXl2Ow1WX1lZvkFHjzOs4zN4nF5THIsjw2XujSxed0Mwlx4x4ejwnhsTgqbw0qvFOX5BUhWpSw1HD4TAvG5rmH13AYulRjRjga/DWG4dy3LlGGa4riziPh+tltOp/ZWIwlaX4kfCn4mwfEnxZ4s/al8G+I/2wfgTc+IbrVfBPhD4dYj8MfCXw59oM9lpvj39kECGH9oX/hHoLaG9bx7deLPjL8Rr/xSIbz4afAXwXb5hrz8tnRwNKjLMoSnm1GrKpDiJ4atmODhUWIq1cJPBZVQp1q/C2LwsqlPB5fjcty/NszcFi8bnXGGDwEoYOHZjI18VOosuqxp5fUoUaVXJFiKeXYuvKOHjRxjr5xXrUqOeYXHShWxWMy3MMdkuT0sPUw2BwuRZpmNKeOrN+MnxY+MnjL9o79jn4T/ALNfxi/4V74H+NXgT4yePPE0a/CXQr3VtB+Gnwq8JDS73XrnRviFoEOreH/EEfxP+JHwR8N6X4bvrHSRpWlw/EjS/EejXOtXWj3Gk6Qw2Y43NOMcLLMIU/qHAOIznD5lbDZpg8PxNnPEnCGC4FqwqYbEQjmVPOsBV49znHKWPq4XM8nyGjhcrqZdmFatn0cnXy/CZJw/i6OBnKVXj3AcM1cDavgKs8opZDxfmXEMamFrYaM8vjkq4ZwuU4etClGrhOIM/wAmxGOw+NyvC4nJMV0nxh+D37VOo3HgWfxP451f9or4TaD8PvDOhfFD4N/C7W7L9mL4g/Ebx/plvMnij4kx+I7LWjbeNdP8X3DRm3+At18Vvgx8NdL0w6pZ+L/FXxBs7uw0SHTEzy6pnGd4utk86mUYzHSrZDlvtlmeG4fwLioRy7M8rxjwtLiynKU608dmeZVsTThgVQoYDgnFZrD+05rDxxkMsy7DUczhRzPD0qkc1zCVGeEq5tUdSU4VsDj8LHF1uGqmGhSprC0cuwscZiMfP2tfinL8t9phX5t+0T8Z9S+HP7JHhWP9h+yt/wBnvxVb/HT4JfAbwn8MfEf7P58IR6J41+KnxQ8I+CoPDGqfDTxJoGgWi+ENKj8ZT+O/E+t+Citr4n8J6Jql58PPiBDFexeLk0pvE5jxTwNgXmEMbgc/zeOFnUh7R1HkPDeGxHFnFrlh8VHD47LamW+HXCvGFTLcpxdDLsfh84lw3XxNKOW0a+WYvG1DA5FxtiZ4KeFxmUcN5zmcYylS9pPP8xwOOyvhF4fH0J4zLsfWzzxAx/DOT4jNubOMuqUK+cUHTr5n7HEUfXv2Rfjj4y+IXxt/bP8AhX4s+IV7490v4LfF3QfBPgG81nw14b0jxUmnad8KPhre+P73Wj4M8MeG9EtfD918SPEHiHRvAaa1ZJ4j1aLQfFlzZalrehadHfQTlc6WY8K4bO4wSliOIeLMNhp875/7DyriPN+EMvpY7mcKVfOo59wXxhicZ9Qo0KVDh3F8G4nHYHD18xwuJxZj3UwfEiymVSLVPhPhnE4+nCjONGPFOPhjOJMyeXyc69SllD4P4q8OJ4ajjMVia8c4qcRYeGNxE8LjKVH75qDYKACgAoA+ffFv7PNj4u8Sar4kk+Mn7Qfh59VnSdtG8JfGHxFoPhuwKQxQ+VpWj2yNBp8DiLzXhiOwzPLJwzGsqNJUISgqlWrzVa9XmrVHUmvbV6lZ04yk7qlS5/Z0IbU6EadJNqCZpUqe0lGThThy06VO1OChFqlTjTU5JPWpUUVOrPedRynL3nJv1TwX4OtvBfhzS/Dq654n8Vf2U93JBr3jjXbnxN4ome7uLmZ2u9cvlFzOYkuHtLbODDYiO0UmJTnpqVOdxfJTg40YUL0oKHPCLi252d5zqShCdSTvzzjCTTlGLOenTVP2vv1JqpV9q1Um5KElFQSpJ6Qgkm1FbOU3duUpHjuufs12Gu61q2tN8bv2kNKbVdQvNQbTND+NXiXTdF09ru4lnNnpOmxI0Vhp9uZPKs7OMmO3t0ihQ7UBPNRpKhShSU6tVQio+0rVJVKsrX96dSXvSk+snrtrudFSftJym404XUVy04KEFyxUbxgtE5WvLvJt6N3PcPDXhy38NaDomhDUtZ186HaLaW+t+KdSm1zxJd4Vke61LWbpftN7ezqds9y+HkXCtlQc9VWp7Wo6nJSpt0qdFqjBU4uFOFKPwp71ZUYVazb/AHlb97K81zHNSpKlB0/aVaq9tVrKVabqSUqtWtO0XLaFJVpUqEf+XWH5aMXyqV/D9c/ZrsNd1rVtab43ftIaU2q6heag2maH8avEum6Lp7XdxLObPSdNiRorDT7cyeVZ2cZMdvbpFCh2oCeWjSVClCkp1aqhFR9pWqSqVZWv706kvelJ9ZPXbXc6ak/aTlNxpwuorlpwUILlio3jBaJyteXeTb0bue4+GfD0PhjQdH0JNT1vXTo9ilhHrfifU5ta8SX0asrNPqus3IFzf3UzIjTzy4aQrGWGUGeqrVdWbnyU6d4UYONGCpwfsKSpQk4p2c5LmnOTu5ValWbfNKTfNRpKjBw9pUqXqV6nNWm6k061apVcFJ6qnDmVOjDanRhSpq6jr5h8QPgdafELxB/wkE3xU+N3hB/sVtYnSfh/8Udd8KeHyLdpiLv+ybFXgF7P5uLm5GHmWOEOMpuPLTpKlPETVSrP29WNVxqVHOFLlo0aPJh4t/uqUlS9rKmm061StUupTZ0zqc8KUOSnH2UJQUoQUZ1E6tSrzVZJ3qTXPyRlLVUo06d2oJnW/Dv4eW3w60a60WLxd498arc6k2pjUviP4tv/ABhrNtI1vb24tbPUdRUS21jGIBNFaINkdxLczK2+WQ10yqc0KMOSlH2KmlUhTUas+dzu6k07zajOVOLe1KTp6xcr88aajOrPnqS9qqUXTlNulH2UpSi4U3pGTk1Kb3lKNN3vFM75Ioo2leOONHmYPM6IqtK6okavKwAMjLHGiBnLMEVEB2qM5rRWWiu3ZbXe7tfd9Xu+rb1NPPytfyTbS9Ltu2123q2230AFABQB/9k=" alt="" />

输出格式

对于每次询问,输出单独一行表示答案。

样例数据 1

输入

5 4 
1 2 3 4 5 
0 1 5 1 
1 1 5 -1 
2 1 5 1 
3 5 5

输出

7

题目分析

同样是线段树裸题。维护区间加、乘标记,对于操作3,先乘-1,再加上x。

坑点同样是下标下放顺序:先乘后加,乘的时候add标记可以直接乘,而加的时候乘号标记必须已经下放。

code

#include<iostream>
#include<cstring>
#include<string>
#include<cstdio>
#include<cstdlib>
#include<algorithm>
#include<cmath>
#include<vector>
using namespace std; const int N = 1e5 + , Mod = 1e9 + ;
typedef long long ll;
int n, m, data[N];
struct node{
int len;
ll sum, add, time;
node():sum(), time(), len(), add(){}
}; namespace SegTree{
node tr[N << ];
inline void upt(int k){
tr[k].sum = (tr[k << ].sum + tr[k << | ].sum) % Mod;
}
inline void build(int k, int l, int r){
tr[k].len = r - l + ;
if(l == r){
tr[k].sum = data[l];
tr[k].add = , tr[k].time = ;
return;
}
int mid = l + r >> , lc = k << , rc = k << | ;
build(lc, l, mid);
build(rc, mid + , r);
upt(k);
}
inline void Add(int , int);
inline void plus(ll &x, ll v){
x = (x + v) % Mod;
while(x < ) x += Mod;
}
inline void mul(ll &x, ll v){
x = (x * v) % Mod;
while(x < ) x += Mod;
}
inline void Time(int k, int v){
mul(tr[k].add , v);
mul(tr[k].sum , v);
mul(tr[k].time , v);
}
inline void Add(int k, int v){
plus(tr[k].sum, 1LL * tr[k].len * v);
plus(tr[k].add, v);
}
inline void pushDown(int k){
int lc = k << , rc = k << | ;
if(tr[k].time != ){
if(tr[k].len > )
Time(lc, tr[k].time),
Time(rc, tr[k].time);
tr[k].time = ;
}
if(tr[k].add){
if(tr[k].len > )
Add(lc, tr[k].add),
Add(rc, tr[k].add);
tr[k].add = ;
}
}
inline void modify(int k, int l, int r, int x, int y, int type, int v){
pushDown(k);
if(x <= l && r <= y){
switch(type){
case : Add(k, v); break;
case : Time(k, v); break;
case : Time(k, -), Add(k, v); break;
}
return;
}
int mid = l + r >> , lc = k << , rc = k << | ;
if(x <= mid) modify(lc, l, mid, x, y, type, v);
if(y > mid) modify(rc, mid + , r, x, y, type, v);
upt(k);
}
inline int query(int k, int l, int r, int x, int y){
pushDown(k);
if(x <= l && r <= y) return tr[k].sum;
int mid = l + r >> , lc = k << , rc = k << | , ret = ;
if(x <= mid) ret = (ret + query(lc, l, mid, x, y)) % Mod;
if(y > mid) ret = (ret + query(rc, mid + , r, x, y)) % Mod;
return ret;
}
}using namespace SegTree; inline int read(){
int i = , f = ; char ch = getchar();
for(; (ch < '' || ch > '') && ch != '-'; ch = getchar());
if(ch == '-') f = -, ch = getchar();
for(; ch >= '' && ch <= ''; ch = getchar())
i = (i << ) + (i << ) + (ch - '');
return i * f;
} inline void wr(int x){
if(x < ) putchar('-'), x = -x;
if(x > ) wr(x / );
putchar(x % + '');
} int main(){
n = read(), m = read();
for(int i = ; i <= n; i++) data[i] = read();
build(, , n);
for(int i = ; i <= m; i++){
int opt = read() + , a = read(), b = read(), c;
if(opt == || opt == || opt == )
c = read(), modify(, , n, a, b, opt, c);
else wr(query(, , n, a, b)), putchar('\n');
}
return ;
}

【序列操作III】线段树的更多相关文章

  1. BZOJ_1858_[Scoi2010]序列操作_线段树

    BZOJ_1858_[Scoi2010]序列操作_线段树 Description lxhgww最近收到了一个01序列,序列里面包含了n个数,这些数要么是0,要么是1,现在对于这个序列有五种变换操作和询 ...

  2. 【BZOJ1858】序列操作(线段树)

    [BZOJ1858]序列操作(线段树) 题面 BZOJ 题解 这题思路很简单,细节很烦,很码 维护区间翻转和区间赋值标记 当打到区间赋值标记时直接覆盖掉翻转标记 下放标记的时候先放赋值标记再放翻转标记 ...

  3. 【BZOJ2962】序列操作(线段树)

    [BZOJ2962]序列操作(线段树) 题面 BZOJ 题解 设\(s[i]\)表示区间内选择\(i\)个数的乘积的和 考虑如何向上合并? \(s[k]=\sum_{i=0}^klson.s[i]*r ...

  4. [SCOI2010]序列操作 BZOJ1858 线段树

    题目描述 lxhgww最近收到了一个01序列,序列里面包含了n个数,这些数要么是0,要么是1,现在对于这个序列有五种变换操作和询问操作: 0 a b 把[a, b]区间内的所有数全变成0 1 a b ...

  5. BZOJ1858 [Scoi2010]序列操作(线段树)

    题目链接 [Scoi2010]序列操作 考验代码能力的一道好题. 思想还是很简单的(直接上线段树),但是比较难写. #include <bits/stdc++.h> using names ...

  6. [bzoj2962]序列操作_线段树_区间卷积

    序列操作 bzoj-2962 题目大意:给定一个n个数的正整数序列,m次操作.支持:1.区间加:2.区间取相反数:3.区间求选c个数的乘积和. 注释:$1\le n,m\le 5\cdot 10^4$ ...

  7. 2019.01.04 bzoj2962: 序列操作(线段树+组合数学)

    传送门 线段树基础题. 题意:要求维护区间区间中选择ccc个数相乘的所有方案的和(c≤20c\le20c≤20),支持区间加,区间取负. 由于c≤20c\le20c≤20,因此可以对于每个线段树节点可 ...

  8. bzoj1858SCOI 序列操作 (线段树)

    题目大意: 给定一个长度为n的01序列为,现在有m种操作 \(0\ a\ b\) 把\([a,b]\)的数全部修改为0 \(1\ a\ b\) 把\([a,b]\)的数全部修改为1 \(2\ a\ b ...

  9. 序列操作 BZOJ2962 线段树

    分析: 数据范围表示:c特别的小(c<20) 我们可以考虑nlogn*c^2的算法. 线段树维护区间信息:f[i]表示在[l,r]这段区间中选择i个数相乘的和. 因此,我们可以将区间看成一个点, ...

  10. BZOJ_2962_序列操作_线段树

    Description 有一个长度为n的序列,有三个操作1.I a b c表示将[a,b]这一段区间的元素集体增加c,2.R a b表示将[a,b]区间内所有元素变成相反数,3.Q a b c表示询问 ...

随机推荐

  1. [D3] Add hovercard

    The way to add hovercard is Append a div with class 'hovercard' in the tick function, positioning th ...

  2. JSP语法基础(一)

    一.JSP页面中的凝视 (1)HTML凝视 <!-- comment [ <%=expression %> ] --> 能在client显示的一种凝视,标记内的全部JSP脚本元 ...

  3. 【几何/数学】概念的理解 —— (非)刚体变换((non-)rigid transformation)

    1. 刚体变换与非刚体变换 What is a non-rigid transformation? 刚体变换(rigid transformation)一般分为如下几种: 平移对象,而不改变形状和大小 ...

  4. 16.用Spring Boot颠覆Java应用开发

    转自:https://www.cnblogs.com/aishangJava/p/5971288.html Java开发概述: 使用Java做Web应用开发已经有近20年的历史了,从最初的Servle ...

  5. 从零开始使用git第一篇:下载安装配置

    从零开始使用git 第一篇:下载安装配置 第一篇:从零开始使用git第一篇:下载安装配置 第二篇:从零开始使用git第二篇:git实践操作 第三篇:从零开始使用git第三篇:git撤销操作.分支操作和 ...

  6. Vue实现上传图片功能

    前言: 用vue实现上传图片功能,效果图如下: 先说文件上传控件样式美化怎么做,我有两种方法. 1.先上代码 html部分: <div class="pics-wrapper" ...

  7. 一起学JAVA之《spring boot》03 - 开始spring boot基本配置及项目结构(转)

    <div class="markdown_views"> <h3 id="一导航"><a name="t0"& ...

  8. 小小ARC造福无数码农

    今天无意中看到非常久之前的一个项目,古老的语法规范,还有更让人战战兢兢"内存管理代码"! 在这不得不说OC中内存管理的三种分类: Mannul Reference Counting ...

  9. JAVA日志库2

    一.常用日志Jar关系 2015第30周四Java日志组件 接口:将所有日志实现适配到了一起,用统一的接口调用. 实现:目前主流的日志实现 旧日志到slf4j的适配器:如果使用了slf4j,但是只想用 ...

  10. Html表单中遇到的问题

    原文 https://www.jianshu.com/p/4466b8294007 大纲 1.表单提交的方式GET和POST的区别 2.js无法对input的file类型的值进行赋值 3.js获取in ...