题目描述

你有一个长度为 nn 的数列 \{a_n\}{an​} ,这个数列由 0,10,1 组成,进行 mm 个的操作:

1~l~r1 l r :把数列区间 [l, r][l,r] 内的所有数取反。即 00 变成 11 ,11 变成 00 。

2~l~r2 l r :询问数列在区间 [l, r][l,r] 内共有多少个本质不同的子序列。

输入输出格式

输入格式:

第一行包含两个整数 n, mn,m ,意义如上所述。

接下来一行包含 nn 个数,表示数列 \{a_n\}{an​} 。

接下来 mm 行,每行包含三个数,表示一个操作,操作格式如上所述。

输出格式:

对于每个询问,输出答案模 10^9 + 7109+7 的结果。

输入输出样例

输入样例#1: 复制

4 4
1 0 1 0
2 1 4
2 2 4
1 2 3
2 1 4
输出样例#1: 复制

11
6
8

说明

对于 10 \%10% 的数据,1 \leq n, m \leq 10^21≤n,m≤102 。

对于 30 \%30% 的数据,1 \leq n, m \leq 10^31≤n,m≤103 。

对于 100 \%100% 的数据,1 \leq n, m \leq 10^51≤n,m≤105 。

这道题同HDU6155(只不过我在HDU上T飞了)

首先我们考虑一下暴力怎么写

dp[i][1]表示到第$i$个位置,以$1$结尾,本质不同的子序列

dp[i][0]表示到第$i$个位置,以$0$结尾,本质不同的子序列

转移的时候,假设第$i$个字符是1

那么对它有贡献的是以前以$0$结尾的子序列,以及以前以$1$结尾的子序列,以及空串

那么此时

$dp[i][1]=dp[i-1][0]+dp[i-1][1]+1$

$dp[i][0]=dp[i-1][0]$

当第$i$个字符是$0$的时候同理,不难得到

$dp[i][1]=dp[i-1][1]$

$dp[i][0]=dp[i-1][0]+dp[i-1][1]+1$

大家有没有发现一件事情?

这个dp的转移是递推!也就是说我们可以用矩阵乘法来加速!

而矩阵乘法可以用线段树来维护!

它的矩阵为

对于操作1的话,先交换要改变的矩阵的第一行和第二行,再交换要改变的矩阵的第一列和第二列

至于为什么?这个可以转移之间的关系入手,也可以直接找规律

这样就实现了两个矩阵的转换

另外还有一点、

对于结果矩阵,我们只会用到[3][1]和[3][2]这两项(分别代表dp[n][1],dp[n][0])

// luogu-judger-enable-o2
// luogu-judger-enable-o2
#include<iostream>
#include<cstdio>
#include<cstring>
#define LL long long int
#define ls k<<1
#define rs k<<1|1
using namespace std;
const int MAXN=1e6+;
const int mod=1e9+;
inline int read()
{
char c=getchar();int x=,f=;
while(c<''||c>''){if(c=='-')f=-;c=getchar();}
while(c>=''&&c<=''){x=x*+c-'';c=getchar();}
return x*f;
}
char c[MAXN];
struct Matrix
{
LL mat[][];
Matrix(){memset(mat,,sizeof(mat));}
};
struct node
{
int l,r,w;
bool f;
Matrix m;
}T[MAXN];
Matrix zero,one,HHHHH;
Matrix rev(Matrix &a)
{
for(LL i=;i<=;i++) swap(a.mat[][i],a.mat[][i]);
for(LL i=;i<=;i++) swap(a.mat[i][],a.mat[i][]);
}
Matrix MatrixMul(Matrix a,Matrix b)
{
Matrix c;
for(LL k=;k<=;k++)
for(LL i=;i<=;i++)
for(LL j=;j<=;j++)
c.mat[i][j]=(c.mat[i][j]+(a.mat[i][k]*b.mat[k][j])%mod )%mod;
return c;
}
void update(int k)
{
T[k].m=MatrixMul(T[ls].m,T[rs].m);
}
void pushdown(int k)
{
if(T[k].f)
{
T[ls].f^=;T[rs].f^=;
rev(T[ls].m);rev(T[rs].m);
T[k].f=;
}
}
void Build(int k,int ll,int rr)
{
T[k].l=ll;T[k].r=rr;T[k].f=;
if(ll==rr)
{
if(c[ll]=='') T[k].m=zero;
else T[k].m=one;
return ;
}
int mid=ll+rr>>;
Build(ls,ll,mid);
Build(rs,mid+,rr);
update(k);
}
void IntervalChange(int k,int ll,int rr)
{
if(ll<=T[k].l&&T[k].r<=rr)
{
T[k].f^=;
rev(T[k].m);
return ;
}
pushdown(k);
int mid=T[k].l+T[k].r>>;
if(ll<=mid) IntervalChange(ls,ll,rr);
if(rr>mid) IntervalChange(rs,ll,rr);
update(k);
}
Matrix IntervalAsk(int k,int ll,int rr)
{
Matrix ans=HHHHH;
if(ll<=T[k].l&&T[k].r<=rr)
{
ans=T[k].m;
return ans;
}
pushdown(k);
LL mid=T[k].l+T[k].r>>;
if(ll<=mid)
ans=MatrixMul(IntervalAsk(ls,ll,rr),ans);
if(rr>mid)
ans=MatrixMul(ans,IntervalAsk(rs,ll,rr));
return ans;
}
int main()
{
int N,M;
zero.mat[][]=zero.mat[][]=zero.mat[][]=zero.mat[][]=zero.mat[][]=;
one.mat[][]=one.mat[][]=one.mat[][]=one.mat[][]=one.mat[][]=;
HHHHH.mat[][]=HHHHH.mat[][]=HHHHH.mat[][]=;
int T;
T=;
while(T--)
{
N=read();M=read();
scanf("%s",c+);
Build(,,N);
while(M--)
{
int opt=read(),l=read(),r=read();
if(opt==)
{
IntervalChange(,l,r);
}
else if(opt==)
{
Matrix ans=IntervalAsk(,l,r);
printf("%lld\n", (ans.mat[][]+ans.mat[][])%mod );
}
}
}
return ;
}

洛谷T21776 子序列的更多相关文章

  1. 洛谷 [T21776] 子序列

    题目描述 你有一个长度为 \(n\) 的数列 \(\{a_n\}\) ,这个数列由 \(0,1\) 组成,进行 \(m\) 个的操作: \(1\ l\ r\) :把数列区间$ [l,r]$ 内的所有数 ...

  2. 洛谷P1410 子序列

    题目描述 给定一个长度为N(N为偶数)的序列,问能否将其划分为两个长度为N/2的严格递增子序列, 输入输出格式 输入格式: 若干行,每行表示一组数据.对于每组数据,首先输入一个整数N,表示序列的长度. ...

  3. 洛谷 P1410 子序列(DP)

    这题的题解的贪心都是错误的...正解应该是个DP 考虑有哪些有关的条件:两个序列的当前长度, 两个序列的末尾数, 把这些都压进状态显然是会GG的 考虑两个长度加起来那一位的数一定是其中一个序列的末尾, ...

  4. 洛谷 P1439 【模板】最长公共子序列

    \[传送门啦\] 题目描述 给出\(1-n\)的两个排列\(P1\)和\(P2\),求它们的最长公共子序列. 输入输出格式 输入格式: 第一行是一个数\(n\), 接下来两行,每行为\(n\)个数,为 ...

  5. 洛谷CF264D Colorful Stones(子序列匹配,思维)

    洛谷题目传送门 神仙思维题. 对于两个字符串的匹配问题,似乎之前蒟蒻写的HAOI2010最长公共子序列题解中提到的建网格图模型是一种套路? 给一个稍微强一点的样例(把字母换成了ABC) AABCB B ...

  6. 洛谷P2516 [HAOI2010]最长公共子序列(LCS,最短路)

    洛谷题目传送门 一进来就看到一个多月前秒了此题的ysn和YCB%%% 最长公共子序列的\(O(n^2)\)的求解,Dalao们想必都很熟悉了吧!不过蒟蒻突然发现,用网格图貌似可以很轻松地理解这个东东? ...

  7. 洛谷1439:最长公共子序列(nlogn做法)

    洛谷1439:最长公共子序列(nlogn做法) 题目描述: 给定两个序列求最长公共子序列. 这两个序列一定是\(1\)~\(n\)的全排列. 数据范围: \(1\leq n\leq 10^5\) 思路 ...

  8. 最长公共子序列问题(LCS) 洛谷 P1439

    题目:P1439 [模板]最长公共子序列 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn) 关于LCS问题,可以通过离散化转换为LIS问题,于是就可以使用STL二分的方法O(nlogn ...

  9. 洛谷P4608 [FJOI2016]所有公共子序列问题 【序列自动机 + dp + 高精】

    题目链接 洛谷P4608 题解 建个序列自动机后 第一问暴搜 第二问dp + 高精 设\(f[i][j]\)为两个序列自动机分别走到\(i\)和\(j\)节点的方案数,答案就是\(f[0][0]\) ...

随机推荐

  1. centos7-centos6常用配置对比

    设置(CentOS 6 vs CentOS 7)系统常用配置 ysvinit vs Upstart vs Systemd) 常见设置: 字符集CentOS 6方法:/etc/sysconfig/i1 ...

  2. JAVA Web项目获取src和WebContent目录下的配置文件

    一,获取src下面的配置文件信息 1,结构图如下: package com.binp.properties; import java.io.FileInputStream; import java.i ...

  3. 今天遇到的一个诡异的core和解决 std::sort

    其实昨天开发pds,就碰到了core,我还以为是内存不够的问题,或者其他问题. 今天把所有代码挪到了as这里,没想到又出core了. 根据直觉,我就觉得可能是std::sort这边的问题. 上网一搜, ...

  4. [MST] Attach Behavior to mobx-state-tree Models Using Actions

    Models are not just a nifty feature for type checking. They enable you to attach behavior to your ac ...

  5. Object-c Associated Object

    oc的关联的作用在我看来就是将两个对象关联起来,用的时候通过key和对象把和这个对象关联的对象再取出来(我做的项目就是和UITableView里面的一个属性关联起来了) 举个栗子: - (void)v ...

  6. vim水平摆放全部窗体的三个方法

    Method1: map <F7> <ESC>:windo exe "normal \<foobar<C-W>C-W>K"<C ...

  7. 《鸟哥的Linux私房菜-基础学习篇(第三版)》(三)

    第2章 Linxu怎样学习         1. Linux当前的应用角色 当前的Linux常见的应用可略分为企业应用和个人应用双方面. 首先谈了企业环境的利用. 1)网络server. 2)关键任务 ...

  8. POJ 3256 Cow Picnic

    Cow Picnic Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 4928   Accepted: 2019 Descri ...

  9. word 的使用 —— 分页符与分节符

    节的概念:节定义了一些格式, 如页边距.页面的方向.页眉和页脚,以及页码的顺序. 分节符是指为表示节的结尾插入的标记. 分节符的作用: 分节符起着分隔其前后文本格式的作用,如果删除了某个分节符,它前面 ...

  10. 6. MongoDB——Java操作(增删改查)

    转自:https://blog.csdn.net/kai402458953/article/details/79626148 import java.net.UnknownHostException; ...