支持中文的基于词为基本粒度的前缀树(prefix trie)python实现
Trie树,也叫字典树、前缀树。可用于”predictive text”和”autocompletion”。亦可用于统计词频(边插入Trie树边更新或加入词频)。
在计算机科学中。trie,又称前缀树或字典树。是一种有序树,用于保存关联数组,当中的键一般是字符串。与二叉查找树不同。键不是直接保存在节点中,而是由节点在树中的位置决定。一个节点的全部子孙都有同样的前缀,也就是这个节点相应的字符串,而根节点相应空字符串。
普通情况下,不是全部的节点都有相应的值,仅仅有叶子节点和部分内部节点所相应的键才有相关的值。
參考资料:http://zh.wikipedia.org/wiki/Trie
#!/usr/bin/python
# -*- coding:utf-8 -*-
# * trie, prefix tree, can be used as a dict
# * author: yangxudongsuda@gmail.com
import sys
reload(sys)
sys.setdefaultencoding("utf-8") # Singleton sentinel - works with pickling
class NULL(object):
pass class Node:
def __init__(self, value = NULL):
self.value = value
self.children = {} class Trie(object):
def __init__(self):
self.root = Node() def insert(self, key, value = None, sep = ' '): # key is a word sequence separated by 'sep'
elements = key if isinstance(key, list) else key.split(sep)
node = self.root
for e in elements:
if not e: continue
if e not in node.children:
child = Node()
node.children[e] = child
node = child
else:
node = node.children[e]
node.value = value def get(self, key, default = None, sep = ' '):
elements = key if isinstance(key, list) else key.split(sep)
node = self.root
for e in elements:
if e not in node.children:
return default
node = node.children[e]
return default if node.value is NULL else node.value def delete(self, key, sep = ' '):
elements = key if isinstance(key, list) else key.split(sep)
return self.__delete(elements) def __delete(self, elements, node = None, i = 0):
node = node if node else self.root
e = elements[i]
if e in node.children:
child_node = node.children[e]
if len(elements) == (i+1):
if child_node.value is NULL: return False # not in dict
if len(child_node.children) == 0:
node.children.pop(e)
else:
child_node.value = NULL
return True
elif self.__delete(elements, child_node, i+1):
if len(child_node.children) == 0:
return node.children.pop(e)
return True
return False def shortest_prefix(self, key, default = NULL, sep = ' '):
elements = key if isinstance(key, list) else key.split(sep)
results = []
node = self.root
value = node.value
for e in elements:
if e in node.children:
results.append(e)
node = node.children[e]
value = node.value
if value is not NULL:
return sep.join(results)
else:
break
if value is NULL:
if default is not NULL:
return default
else:
raise Exception("no item matches any prefix of the given key!")
return sep.join(results) def longest_prefix(self, key, default = NULL, sep = ' '):
elements = key if isinstance(key, list) else key.split(sep)
results = []
node = self.root
value = node.value
for e in elements:
if e not in node.children:
if value is not NULL:
return sep.join(results)
elif default is not NULL:
return default
else:
raise Exception("no item matches any prefix of the given key!")
results.append(e)
node = node.children[e]
value = node.value
if value is NULL:
if default is not NULL:
return default
else:
raise Exception("no item matches any prefix of the given key!")
return sep.join(results) def longest_prefix_value(self, key, default = NULL, sep = ' '):
elements = key if isinstance(key, list) else key.split(sep)
node = self.root
value = node.value
for e in elements:
if e not in node.children:
if value is not NULL:
return value
elif default is not NULL:
return default
else:
raise Exception("no item matches any prefix of the given key!")
node = node.children[e]
value = node.value
if value is not NULL:
return value
if default is not NULL:
return default
raise Exception("no item matches any prefix of the given key!") def longest_prefix_item(self, key, default = NULL, sep = ' '):
elements = key if isinstance(key, list) else key.split(sep)
node = self.root
value = node.value
results = []
for e in elements:
if e not in node.children:
if value is not NULL:
return (sep.join(results), value)
elif default is not NULL:
return default
else:
raise Exception("no item matches any prefix of the given key!")
results.append(e)
node = node.children[e]
value = node.value
if value is not NULL:
return (sep.join(results), value)
if default is not NULL:
return (sep.join(results), default)
raise Exception("no item matches any prefix of the given key!") def __collect_items(self, node, path, results, sep):
if node.value is not NULL:
results.append((sep.join(path), node.value))
for k, v in node.children.iteritems():
path.append(k)
self.__collect_items(v, path, results, sep)
path.pop()
return results def items(self, prefix, sep = ' '):
elements = prefix if isinstance(prefix, list) else prefix.split(sep)
node = self.root
for e in elements:
if e not in node.children:
return []
node = node.children[e]
results = []
path = [prefix]
self.__collect_items(node, path, results, sep)
return results def keys(self, prefix, sep = ' '):
items = self.items(prefix, sep)
return [key for key,value in items] if __name__ == '__main__':
trie = Trie()
trie.insert('happy 站台', 1)
trie.insert('happy 站台 xx', 10)
trie.insert('happy 站台 xx yy', 11)
trie.insert('happy 站台 美食 购物 广场', 2)
trie.insert('sm')
trie.insert('sm 国际', 22)
trie.insert('sm 国际 广场', 2)
trie.insert('sm 城市广场', 3)
trie.insert('sm 广场', 4)
trie.insert('sm 新生活 广场', 5)
trie.insert('sm 购物 广场', 6)
trie.insert('soho 尚都', 3) print trie.get('sm')
print trie.longest_prefix([], default="empty list")
print trie.longest_prefix('sm')
print trie.shortest_prefix('happy 站台')
print trie.shortest_prefix('happy 站台 xx')
print trie.shortest_prefix('sm')
print trie.longest_prefix('sm xx', sep = '&', default = None)
print 'sm 广场 --> ', trie.get('sm 广场')
print trie.get('sm 广场'.split(' '))
print trie.get('神马')
print trie.get('happy 站台')
print trie.get('happy 站台 美食 购物 广场')
print trie.longest_prefix('soho 广场', 'default')
print trie.longest_prefix('soho 尚都 广场')
print trie.longest_prefix_value('soho 尚都 广场')
print trie.longest_prefix_value('xx 尚都 广场', 90)
print trie.longest_prefix_value('xx 尚都 广场', 'no prefix')
print trie.longest_prefix_item('soho 尚都 广场') print '============== keys ================='
print 'prefix "sm": ', ' | '.join(trie.keys('sm'))
print '============== items ================='
print 'prefix "sm": ', trie.items('sm') print '================= delete ====================='
print trie.delete('sm 广场')
print trie.get('sm 广场')
print trie.delete('sm 国际')
print trie.get('sm 国际')
print trie.delete('sm xx')
print trie.delete('xx') print '====== no item matches any prefix of given key ========'
print trie.longest_prefix_value('happy')
print trie.longest_prefix_value('soho xx')
执行结果:
None
empty list
sm
happy 站台
happy 站台
sm
None
sm 广场 --> 4
4
None
1
2
default
soho 尚都
3
90
no prefix
('soho \xe5\xb0\x9a\xe9\x83\xbd', 3)
============== keys =================
prefix "sm": sm | sm 新生活 广场 | sm 城市广场 | sm 广场 | sm 购物 广场 | sm 国际 | sm 国际 广场
============== items =================
prefix "sm": [('sm', None), ('sm \xe6\x96\xb0\xe7\x94\x9f\xe6\xb4\xbb \xe5\xb9\xbf\xe5\x9c\xba', 5), ('sm \xe5\x9f\x8e\xe5\xb8\x82\xe5\xb9\xbf\xe5\x9c\xba', 3), ('sm \xe5\xb9\xbf\xe5\x9c\xba', 4), ('sm \xe8\xb4\xad\xe7\x89\xa9 \xe5\xb9\xbf\xe5\x9c\xba', 6),
('sm \xe5\x9b\xbd\xe9\x99\x85', 22), ('sm \xe5\x9b\xbd\xe9\x99\x85 \xe5\xb9\xbf\xe5\x9c\xba', 2)]
================= delete =====================
True
None
True
None
False
False
====== no item matches any prefix of given key ========
Traceback (most recent call last):
File "./word_based_trie.py", line 225, in <module>
print trie.longest_prefix_value('happy')
File "./word_based_trie.py", line 128, in longest_prefix_value
raise Exception("no item matches any prefix of the given key!")
Exception: no item matches any prefix of the given key!
支持中文的基于词为基本粒度的前缀树(prefix trie)python实现的更多相关文章
- 基于bert的命名实体识别,pytorch实现,支持中文/英文【源学计划】
声明:为了帮助初学者快速入门和上手,开始源学计划,即通过源代码进行学习.该计划收取少量费用,提供有质量保证的源码,以及详细的使用说明. 第一个项目是基于bert的命名实体识别(name entity ...
- 基于myscript.js的web手写板(支持中文识别)
网上的手写板模板不少,但是支持中文识别的却不多,而且基本上都收费的,毕竟别人的中文库凭什么免费提供给你(说好的开源呢?说好的开源呢? ←_←) 好了,进入主题,myscript.js,在官网其实我并没 ...
- Sphinx在windows下安装使用[支持中文全文检索]
原文地址:http://www.fuchaoqun.com/2008/11/sphinx-on-windows-xp/ 前 一阵子尝试使用了一下Sphinx,一个能够被各种语言(PHP/Python/ ...
- jQuery.qrcode.js客户端生成二维码,支持中文并且可以生成LOGO
描述: jquery.qrcode.js 是一个能够在客户端生成矩阵二维码QRCode 的jquery插件 ,使用它可以很方便的在页面上生成二维条码.此插件是能够独立使用的,体积也比较 ...
- flying-saucer + iText + Freemarker实现pdf的导出, 支持中文、css以及图片
前言 项目中有个需求,需要将合同内容导出成pdf.上网查阅到了 iText , iText 是一个生成PDF文档的开源Java库,能够动态的从XML或者数据库生成PDF,同时还可以对文档进行加密,权限 ...
- PHP生成PDF完美支持中文,解决TCPDF乱码
PHP生成PDF完美支持中文,解决TCPDF乱码 2011-09-26 09:04 418人阅读 评论(0) 收藏 举报 phpfontsheaderttfxhtml文档 PHP生成PDF完美支持中文 ...
- helm-mode打开文件支持中文搜索
helm-mode打开文件支持中文搜索 */--> code {color: #FF0000} pre.src {background-color: #002b36; color: #83949 ...
- 构建支持中文字体的moviepy镜像
首先是系统的环境问题. linux 安装 moviepy需要很多依赖,安装起来费神费力.配置起来也非常麻烦,最简单的办法是直接使用他人构建好的镜像文件. 再就是字体显示问题. 镜像中的imagmagi ...
- 支持中文!秒建 wiki 知识库的开源项目,构建私人知识网络
不知道有没有人和我一样,觉得自建的东西是互联网上的"自留地".私人空间,有一种自己的一亩三分地随心所欲的痛快. 比如自建的博客想写什么随笔就写什么,不用取悦读者可以自娱自乐:再比如 ...
随机推荐
- Pet(dfs)
http://acm.hdu.edu.cn/showproblem.php?pid=4707 题意:判断距离大于D的点有多少个. 思路: 邻接表建图,dfs每一个点,记录步数. #include &l ...
- MySQL-基础操作之增删改查
1.增 (1)创建数据库dks create database dks; (2)创建名为t1的表,并指定引擎和字符集: ) not null,ages int) engine=innodb defau ...
- POJ 3630 trie树
Phone List Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 26559 Accepted: 8000 Descripti ...
- [hihocoder][Offer收割]编程练习赛59
替换函数 #pragma comment(linker, "/STACK:102400000,102400000") #include<stdio.h> #includ ...
- Android 解析XML—pull解析方式
在Android中,常见的XML解析器分别为SAX解析器.DOM解析器和PULL解析器,其中PULL解析器小巧轻便,解析速度快,简单易用,非常适合在Android移动设备中使用,Android系统内部 ...
- 课上练习 script
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...
- ORACLE锁表解锁
SELECT object_name, machine, s.sid, s.serial# FROM gv$locked_object l, dba_objects o, gv$session s W ...
- Java_Web之分层架构
当我们把业务处理的代码与JSP代码混在一起,不易于阅读,不易于代码维护,这就需要分层. 分层模式 1.分层模式是最常见的一种架构模式 2.分层模式是很多架构模式的基础 分层 将解决方案的组件分隔到不同 ...
- OpenCV : 基于切线方向的边缘增强算法
使用切线方法,对切线方向上的边缘进行强化: 参考连接:图像锐化和边缘检测 代码: //在种子点方向上寻找合适的梯度,用于寻找边缘 //对low_Gray, high_gray之间的点寻找边缘 void ...
- 从柯洁对战AlphaGo,看商业智能
[摘要]李开复赛前说,AlphaGo和李世石的人机大战是第一次,可能还有悬念,那今天的AlphaGo已经在围棋的世界中彻底甩开了人类,不再拥有任何其他的可能.并指出,AlphaGo和柯洁的比赛并非没有 ...