Trie树,也叫字典树、前缀树。可用于”predictive text”和”autocompletion”。亦可用于统计词频(边插入Trie树边更新或加入词频)。

计算机科学中。trie,又称前缀树字典树。是一种有序,用于保存关联数组,当中的键一般是字符串。与二叉查找树不同。键不是直接保存在节点中,而是由节点在树中的位置决定。一个节点的全部子孙都有同样的前缀,也就是这个节点相应的字符串,而根节点相应空字符串

普通情况下,不是全部的节点都有相应的值,仅仅有叶子节点和部分内部节点所相应的键才有相关的值。

參考资料:http://zh.wikipedia.org/wiki/Trie

#!/usr/bin/python
# -*- coding:utf-8 -*-
# * trie, prefix tree, can be used as a dict
# * author: yangxudongsuda@gmail.com
import sys
reload(sys)
sys.setdefaultencoding("utf-8") # Singleton sentinel - works with pickling
class NULL(object):
pass class Node:
def __init__(self, value = NULL):
self.value = value
self.children = {} class Trie(object):
def __init__(self):
self.root = Node() def insert(self, key, value = None, sep = ' '): # key is a word sequence separated by 'sep'
elements = key if isinstance(key, list) else key.split(sep)
node = self.root
for e in elements:
if not e: continue
if e not in node.children:
child = Node()
node.children[e] = child
node = child
else:
node = node.children[e]
node.value = value def get(self, key, default = None, sep = ' '):
elements = key if isinstance(key, list) else key.split(sep)
node = self.root
for e in elements:
if e not in node.children:
return default
node = node.children[e]
return default if node.value is NULL else node.value def delete(self, key, sep = ' '):
elements = key if isinstance(key, list) else key.split(sep)
return self.__delete(elements) def __delete(self, elements, node = None, i = 0):
node = node if node else self.root
e = elements[i]
if e in node.children:
child_node = node.children[e]
if len(elements) == (i+1):
if child_node.value is NULL: return False # not in dict
if len(child_node.children) == 0:
node.children.pop(e)
else:
child_node.value = NULL
return True
elif self.__delete(elements, child_node, i+1):
if len(child_node.children) == 0:
return node.children.pop(e)
return True
return False def shortest_prefix(self, key, default = NULL, sep = ' '):
elements = key if isinstance(key, list) else key.split(sep)
results = []
node = self.root
value = node.value
for e in elements:
if e in node.children:
results.append(e)
node = node.children[e]
value = node.value
if value is not NULL:
return sep.join(results)
else:
break
if value is NULL:
if default is not NULL:
return default
else:
raise Exception("no item matches any prefix of the given key!")
return sep.join(results) def longest_prefix(self, key, default = NULL, sep = ' '):
elements = key if isinstance(key, list) else key.split(sep)
results = []
node = self.root
value = node.value
for e in elements:
if e not in node.children:
if value is not NULL:
return sep.join(results)
elif default is not NULL:
return default
else:
raise Exception("no item matches any prefix of the given key!")
results.append(e)
node = node.children[e]
value = node.value
if value is NULL:
if default is not NULL:
return default
else:
raise Exception("no item matches any prefix of the given key!")
return sep.join(results) def longest_prefix_value(self, key, default = NULL, sep = ' '):
elements = key if isinstance(key, list) else key.split(sep)
node = self.root
value = node.value
for e in elements:
if e not in node.children:
if value is not NULL:
return value
elif default is not NULL:
return default
else:
raise Exception("no item matches any prefix of the given key!")
node = node.children[e]
value = node.value
if value is not NULL:
return value
if default is not NULL:
return default
raise Exception("no item matches any prefix of the given key!") def longest_prefix_item(self, key, default = NULL, sep = ' '):
elements = key if isinstance(key, list) else key.split(sep)
node = self.root
value = node.value
results = []
for e in elements:
if e not in node.children:
if value is not NULL:
return (sep.join(results), value)
elif default is not NULL:
return default
else:
raise Exception("no item matches any prefix of the given key!")
results.append(e)
node = node.children[e]
value = node.value
if value is not NULL:
return (sep.join(results), value)
if default is not NULL:
return (sep.join(results), default)
raise Exception("no item matches any prefix of the given key!") def __collect_items(self, node, path, results, sep):
if node.value is not NULL:
results.append((sep.join(path), node.value))
for k, v in node.children.iteritems():
path.append(k)
self.__collect_items(v, path, results, sep)
path.pop()
return results def items(self, prefix, sep = ' '):
elements = prefix if isinstance(prefix, list) else prefix.split(sep)
node = self.root
for e in elements:
if e not in node.children:
return []
node = node.children[e]
results = []
path = [prefix]
self.__collect_items(node, path, results, sep)
return results def keys(self, prefix, sep = ' '):
items = self.items(prefix, sep)
return [key for key,value in items] if __name__ == '__main__':
trie = Trie()
trie.insert('happy 站台', 1)
trie.insert('happy 站台 xx', 10)
trie.insert('happy 站台 xx yy', 11)
trie.insert('happy 站台 美食 购物 广场', 2)
trie.insert('sm')
trie.insert('sm 国际', 22)
trie.insert('sm 国际 广场', 2)
trie.insert('sm 城市广场', 3)
trie.insert('sm 广场', 4)
trie.insert('sm 新生活 广场', 5)
trie.insert('sm 购物 广场', 6)
trie.insert('soho 尚都', 3) print trie.get('sm')
print trie.longest_prefix([], default="empty list")
print trie.longest_prefix('sm')
print trie.shortest_prefix('happy 站台')
print trie.shortest_prefix('happy 站台 xx')
print trie.shortest_prefix('sm')
print trie.longest_prefix('sm xx', sep = '&', default = None)
print 'sm 广场 --> ', trie.get('sm 广场')
print trie.get('sm 广场'.split(' '))
print trie.get('神马')
print trie.get('happy 站台')
print trie.get('happy 站台 美食 购物 广场')
print trie.longest_prefix('soho 广场', 'default')
print trie.longest_prefix('soho 尚都 广场')
print trie.longest_prefix_value('soho 尚都 广场')
print trie.longest_prefix_value('xx 尚都 广场', 90)
print trie.longest_prefix_value('xx 尚都 广场', 'no prefix')
print trie.longest_prefix_item('soho 尚都 广场') print '============== keys ================='
print 'prefix "sm": ', ' | '.join(trie.keys('sm'))
print '============== items ================='
print 'prefix "sm": ', trie.items('sm') print '================= delete ====================='
print trie.delete('sm 广场')
print trie.get('sm 广场')
print trie.delete('sm 国际')
print trie.get('sm 国际')
print trie.delete('sm xx')
print trie.delete('xx') print '====== no item matches any prefix of given key ========'
print trie.longest_prefix_value('happy')
print trie.longest_prefix_value('soho xx')

执行结果:

None

empty list

sm

happy 站台

happy 站台

sm

None

sm 广场 -->  4

4

None

1

2

default

soho 尚都

3

90

no prefix

('soho \xe5\xb0\x9a\xe9\x83\xbd', 3)

============== keys =================

prefix "sm":  sm | sm 新生活 广场 | sm 城市广场 | sm 广场 | sm 购物 广场 | sm 国际 | sm 国际 广场

============== items =================

prefix "sm":  [('sm', None), ('sm \xe6\x96\xb0\xe7\x94\x9f\xe6\xb4\xbb \xe5\xb9\xbf\xe5\x9c\xba', 5), ('sm \xe5\x9f\x8e\xe5\xb8\x82\xe5\xb9\xbf\xe5\x9c\xba', 3), ('sm \xe5\xb9\xbf\xe5\x9c\xba', 4), ('sm \xe8\xb4\xad\xe7\x89\xa9 \xe5\xb9\xbf\xe5\x9c\xba', 6),
('sm \xe5\x9b\xbd\xe9\x99\x85', 22), ('sm \xe5\x9b\xbd\xe9\x99\x85 \xe5\xb9\xbf\xe5\x9c\xba', 2)]

================= delete =====================

True

None

True

None

False

False

====== no item matches any prefix of given key ========

Traceback (most recent call last):

  File "./word_based_trie.py", line 225, in <module>

    print trie.longest_prefix_value('happy')

  File "./word_based_trie.py", line 128, in longest_prefix_value

    raise Exception("no item matches any prefix of the given key!")

Exception: no item matches any prefix of the given key!

支持中文的基于词为基本粒度的前缀树(prefix trie)python实现的更多相关文章

  1. 基于bert的命名实体识别,pytorch实现,支持中文/英文【源学计划】

    声明:为了帮助初学者快速入门和上手,开始源学计划,即通过源代码进行学习.该计划收取少量费用,提供有质量保证的源码,以及详细的使用说明. 第一个项目是基于bert的命名实体识别(name entity ...

  2. 基于myscript.js的web手写板(支持中文识别)

    网上的手写板模板不少,但是支持中文识别的却不多,而且基本上都收费的,毕竟别人的中文库凭什么免费提供给你(说好的开源呢?说好的开源呢? ←_←) 好了,进入主题,myscript.js,在官网其实我并没 ...

  3. Sphinx在windows下安装使用[支持中文全文检索]

    原文地址:http://www.fuchaoqun.com/2008/11/sphinx-on-windows-xp/ 前 一阵子尝试使用了一下Sphinx,一个能够被各种语言(PHP/Python/ ...

  4. jQuery.qrcode.js客户端生成二维码,支持中文并且可以生成LOGO

    描述: jquery.qrcode.js 是一个能够在客户端生成矩阵二维码QRCode 的jquery插件 ,使用它可以很方便的在页面上生成二维条码.此插件是能够独立使用的,体积也比较         ...

  5. flying-saucer + iText + Freemarker实现pdf的导出, 支持中文、css以及图片

    前言 项目中有个需求,需要将合同内容导出成pdf.上网查阅到了 iText , iText 是一个生成PDF文档的开源Java库,能够动态的从XML或者数据库生成PDF,同时还可以对文档进行加密,权限 ...

  6. PHP生成PDF完美支持中文,解决TCPDF乱码

    PHP生成PDF完美支持中文,解决TCPDF乱码 2011-09-26 09:04 418人阅读 评论(0) 收藏 举报 phpfontsheaderttfxhtml文档 PHP生成PDF完美支持中文 ...

  7. helm-mode打开文件支持中文搜索

    helm-mode打开文件支持中文搜索 */--> code {color: #FF0000} pre.src {background-color: #002b36; color: #83949 ...

  8. 构建支持中文字体的moviepy镜像

    首先是系统的环境问题. linux 安装 moviepy需要很多依赖,安装起来费神费力.配置起来也非常麻烦,最简单的办法是直接使用他人构建好的镜像文件. 再就是字体显示问题. 镜像中的imagmagi ...

  9. 支持中文!秒建 wiki 知识库的开源项目,构建私人知识网络

    不知道有没有人和我一样,觉得自建的东西是互联网上的"自留地".私人空间,有一种自己的一亩三分地随心所欲的痛快. 比如自建的博客想写什么随笔就写什么,不用取悦读者可以自娱自乐:再比如 ...

随机推荐

  1. E20170808-mk

    Backtick  反引号 import n. 输入; 进口,进口商品 triggered  adj. 触发的;

  2. bzoj 3172 单词

    3172: [Tjoi2013]单词 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 3937  Solved: 1912[Submit][Status ...

  3. 【钓起来的tips系列】

    一.求n的阶乘: #include<bits/stdc++.h> using namespace std; int n; int jc(int k) { ); )*k; } /*int j ...

  4. ROS-URDF-Gazebo

    前言:在gazebo里运行urdf文件 一.安装教程包 cd ~/catkin_test/srcgit clone https://github.com/ros/urdf_sim_tutorial.g ...

  5. Md2All,让公众号完美显示Latex数学公式

    当公众号遇上Latex 大家都知到,公众号连代码块都不支持,更不要说功能强大的Latex公式了.那在Md2All之前,如果想在公众号上显示Latex公式应该怎么办呢? 最通常的做法就是在某个支持Lat ...

  6. Assembly之instruction之Indirect Autoincrement Mode

    Assembler Code Content of ROMMOV @R10+,0(R11)   MOV @R10+,0(R11) Length: One or two words Operation: ...

  7. DOM高级编程

    前言:W3C规定的三类DOM标准接口(换图)Core DOM(核心DOM),适用于各种结构化文档:XML DOM(Java OOP学过),专用于XML文档:HTML DOM,专用于HTML文档,下面了 ...

  8. (转)Arcgis for JS实现台风运动路径与影像范围的显示

    http://blog.csdn.net/gisshixisheng/article/details/42025435 首先,看看具体的效果: 初始化状态 绘制中 绘制完成 首先,组织数据.我组织的数 ...

  9. tomcat ider配置

    xml文件配置: <servlet> <servlet-name>test1</servlet-name>//设定java文件链接的锚点 <servlet-c ...

  10. 微信小程序,时间戳和日期格式互相转化

    微信小程序,时间戳转为日期格式 通常后台传递过来的都是时间戳,但是前台展示不能展示时间戳.就需要转化了. 功能说明: 微信小程序里,时间戳转化为日期格式,支持自定义. 拷贝至项目utils/utils ...