1001: [BeiJing2006]狼抓兔子

Time Limit: 15 Sec Memory Limit: 162 MB

Submit: 12719 Solved: 3017

[Submit][Status][Discuss]

Description

如今小朋友们最喜欢的”喜羊羊与灰太狼”,话说灰太狼抓羊不到,但抓兔子还是比較在行的,并且如今的兔子还比較笨,它们仅仅有两个窝,如今你做为狼王,面对以下这样一个网格的地形:

左上角点为(1,1),右下角点为(N,M)(上图中N=4,M=5).有以下三种类型的道路 1:(x,y)<==>(x+1,y) 2:(x,y)<==>(x,y+1) 3:(x,y)<==>(x+1,y+1) 道路上的权值表示这条路上最多可以通过的兔子数。道路是无向的. 左上角和右下角为兔子的两个窝,開始时全部的兔子都聚集在左上角(1,1)的窝里。如今它们要跑到右下解(N,M)的窝中去。狼王開始伏击这些兔子.当然为了保险起见,假设一条道路上最多通过的兔子数为K,狼王须要安排相同数量的K仅仅狼。才干全然封锁这条道路,你须要帮助狼王安排一个伏击方案,使得在将兔子一网打尽的前提下。參与的狼的数量要最小。由于狼还要去找喜羊羊麻烦.

Input

第一行为N,M.表示网格的大小,N,M均小于等于1000.接下来分三部分第一部分共N行,每行M-1个数,表示横向道路的权值. 第二部分共N-1行,每行M个数,表示纵向道路的权值. 第三部分共N-1行,每行M-1个数。表示斜向道路的权值. 输入文件保证不超过10M

Output

输出一个整数。表示參与伏击的狼的最小数量.

Sample Input

3 4

5 6 4

4 3 1

7 5 3

5 6 7 8

8 7 6 5

5 5 5

6 6 6

Sample Output

14

HINT

看着论文学了一下平面图和对偶图

url=1oA7Svl0XEyQmqJgAjE1HKIEUKbqHaoi8qybJYLef5Z646hXs2AETmTQRwfkFBnN4dhouxiwc2YhAQTZSrgWaQqNP-RnhoM7VDdsFz92ziq">《两极相通—浅析最大最小定理在信息学竞赛中的应用》

事实上就是将这个平面图转化成一个对偶图,在这个对偶图上求最短路的长度,就是原来平面图的最小割。

#include<iostream>
#include<cstdio>
#include<cstring>
#define T n*(m-1)+(n-1)*m+(n-1)*(m-1)-n*m+3
using namespace std;
const int N=2001000;
int n,m,point[N],next[N*3],tot=1,ans,dis[N],l[10000000];
struct S{
int st,en,va;
}aa[N*3];
bool f[N];
inline void add(int x,int y,int z)
{
tot+=1,next[tot]=point[x];point[x]=tot;
aa[tot].st=x;aa[tot].en=y;aa[tot].va=z;
tot+=1,next[tot]=point[y];point[y]=tot;
aa[tot].st=y;aa[tot].en=x;aa[tot].va=z;
}
inline int SPFA(int x,int y)
{
int h=1,t=1,u,i;
memset(dis,127/3,sizeof(dis));
memset(f,1,sizeof(f));
l[h]=x;dis[x]=0;
while(h<=t){
u=l[h];
f[u]=true;
for(i=point[u];i;i=next[i])
if(dis[aa[i].en]>dis[u]+aa[i].va){
dis[aa[i].en]=dis[u]+aa[i].va;
if(f[aa[i].en]){
f[aa[i].en]=false;
t+=1;
l[t]=aa[i].en;
}
}
h+=1;
}
return dis[y];
}
int main()
{
int i,j,x,y,z;
scanf("%d%d",&n,&m);
ans=210000000;
for(i=1;i<=n;++i)
for(j=1;j<m;++j){
scanf("%d",&x);
if(n==1) ans=min(ans,x);
if(i==1) add(1,j*2+1,x);
else if(i==n) add((i-2)*(m-1)*2+j*2,T,x);
else add((i-2)*(m-1)*2+j*2,(i-1)*(m-1)*2+j*2+1,x);
}
for(i=1;i<n;++i)
for(j=1;j<=m;++j){
scanf("%d",&x);
if(m==1) ans=min(ans,x);
if(j==1) add((i-1)*(m-1)*2+2,T,x);
else if(j==m) add(1,i*(m-1)*2+1,x);
else add((i-1)*(m-1)*2+(j-1)*2+1,(i-1)*(m-1)*2+j*2,x);
}
for(i=1;i<n;++i)
for(j=1;j<m;++j){
scanf("%d",&x);
add((i-1)*(m-1)*2+j*2,(i-1)*(m-1)*2+j*2+1,x);
}
if(n==1&&m==1) ans=0;
if(n==1||m==1) printf("%d\n",ans);
else printf("%d\n",SPFA(1,T));
}

【bzoj1001】【狼抓兔子】的更多相关文章

  1. bzoj1001狼抓兔子 对偶图优化

    bzoj1001狼抓兔子 对偶图优化 链接 https://www.lydsy.com/JudgeOnline/problem.php?id=1001 思路 菜鸡总是要填坑的! 很明显让你求网格图的最 ...

  2. BZOJ-1001 狼抓兔子 (最小割-最大流)平面图转对偶图+SPFA

    1001: [BeiJing2006]狼抓兔子 Time Limit: 15 Sec Memory Limit: 162 MB Submit: 14686 Solved: 3513 [Submit][ ...

  3. bzoj1001狼抓兔子

    1001: [BeiJing2006]狼抓兔子 现在小朋友们最喜欢的"喜羊羊与灰太狼",话说灰太狼抓羊不到,但抓兔子还是比较在行的, 而且现在的兔子还比较笨,它们只有两个窝,现在你 ...

  4. BZOJ1001:狼抓兔子(最小割最大流+vector模板)

    1001: [BeiJing2006]狼抓兔子 Description 现在小朋友们最喜欢的"喜羊羊与灰太狼",话说灰太狼抓羊不到,但抓兔子还是比较在行的,而且现在的兔子还比较笨, ...

  5. BZOJ1001 狼抓兔子(裸网络流)

    Description 现在小朋友们最喜欢的"喜羊羊与灰太狼",话说灰太狼抓羊不到,但抓兔子还是比较在行的, 而且现在的兔子还比较笨,它们只有两个窝,现在你做为狼王,面对下面这样一 ...

  6. 【建图+最短路】Bzoj1001 狼抓兔子

    Description 现在小朋友们最喜欢的"喜羊羊与灰太狼",话说灰太狼抓羊不到,但抓兔子还是比较在行的,而且现在的兔子还比较笨,它们只有两个窝,现在你做为狼王,面对下面这样一个 ...

  7. BZOJ1001 狼抓兔子 平面图转对偶图 最小割

    现在小朋友们最喜欢的"喜羊羊与灰太狼",话说灰太狼抓羊不到,但抓兔子还是比较在行的,而且现在的兔子还比较笨,它们只有两个窝,现在你做为狼王,面对下面这样一个网格的地形: 左上角点为 ...

  8. 最大流最小割——bzoj1001狼抓兔子,洛谷P2598

    前置知识 平面图 平面图就是平面上任意边都不相交的图.(自己瞎画的不算XD) 对偶图 比如说这个图,我们发现平面图肯定会把平面分成不同的区域(感觉像拓扑图),并把这些区域当做每个点(不被包围的区域独自 ...

  9. BZOJ1001 狼抓兔子

    最小割 代码 # include <bits/stdc++.h> # define IL inline # define RG register # define Fill(a, b) m ...

  10. [BJOI2006][bzoj1001] 狼抓兔子 [最小割]

    题面: 传送门 思路: 其实就是一道最小割的题目...... 我的写法加了两个优化,常数比较小,所以过掉了 一个是当前弧,一个是若当前点并不能流出去,那么标记dep为-1 听说正解是对偶图最短路?可以 ...

随机推荐

  1. [Apple开发者帐户帮助]二、管理你的团队(5)转移帐户持有人角色

    组织团队的帐户持有人可以将帐户持有人角色转移给团队中的其他人.如果您是个人注册并需要将您的会员资格转移给其他人,请与我们联系. 所需角色:帐户持有人. 转移Apple Developer Progra ...

  2. Appium - 命令行参数

    1.cmd端口输入,appium -help参考帮助信息 2.Appium - 命令行参数 参数 默认 描述 举个例子 --shell 空值 进入REPL模式   --ipa 空值 (仅限IOS)ab ...

  3. TCP/IP,必知必会的

    文章目录 前言 TCP/IP模型 数据链路层 网络层 ping Traceroute TCP/UDP DNS TCP连接的建立与终止 TCP流量控制 TCP拥塞控制 0 前言 本文整理了一些TCP/I ...

  4. [转]JAVA回调机制(CallBack)详解

    看见一篇博客比较通俗的解释了回调机制,转载一下,感谢原文作者Bro__超,原文地址:http://www.cnblogs.com/heshuchao/p/5376298.html 序言 最近学习jav ...

  5. 《深入理解Android虚拟机内存管理》示例程序编译阶段生成的各种语法树完整版

    1.tokens "int"                   "int" <SPACES>                " &quo ...

  6. OpenVX

    OpenVX openvx  1. 编译 尝试编译openvx_sample,下载相关代码. 下载的sample code直接使用make可以生成libopenvx.so. 使用python Buil ...

  7. 获取XML里指定的节点内容信息

    HttpContent bw = new StringContent(StrXml, Encoding.UTF8, "application/Xml"); var Msg = aw ...

  8. electron 学习

    index.html <!DOCTYPE html> <html lang="en"> <head> <meta charset=&quo ...

  9. SQL Server存储过程作业(二)

    阶段1:练习——统计某类型客房的入住客人人数 需求说明 使用存储过程统计在指定类型的客房入住客人的总人数 提示: 存储过程的输入参数是指定的客房类型名称 USE Hotel GO --阶段1:查询入住 ...

  10. Python语言之常用函数

    1.input(),raw_input() input() = eval( raw_input() ) 其中raw_input()将所有的输入当做字符串处理. eval(str [,globals [ ...