problem:

Implement pow(x, n).

Hide Tags

Math Binary
Search

题意:求x的n次幂

thinking:

(1)最简单想到的是直观上的数学幂函数求法,測试通过。算法时间复杂度为O(n)

(2)依照标签提示,使用二分搜索法。

pow(x,n) = pow(x,n-n/2)*pow(x,n/2),每次对n的规模缩半,注意对n的奇偶进行讨论,算法时间复杂度为log(n)

(3)除了上述方法,这里还提到了一种十分巧妙而且高速的方法,原文描写叙述例如以下:



Consider the binary representation of n. For example, if it is "10001011", then x^n = x^(1+2+8+128) = x^1 * x^2 * x^8 * x^128. Thus, we don't want to loop n times to calculate x^n. To speed up, we loop through each bit, if the i-th bit is 1, then we add x^(1
<< i) to the result. Since (1 << i) is a power of 2, x^(1<<(i+1)) = square(x^(1<<i)). The loop executes for a maximum of log(n) times.



该方法通过扫描n的二进制表示形式里不同位置上的1,来计算x的幂次,最坏为O(n),但平均复杂度非常好

code:

(1)递归法:accepted

class Solution {
public:
double pow(double x, int n) {
double ret=1.0;
if(x==1.0 )
return 1.0;
if(x==-1.0)
{
if(n%2==0)
return 1.0;
else
return -1.0;
}
if(n<0)
return 1.0/pow(x,-n);
while(n)
{
if(ret==0) //防止执行超时
return 0;
ret*=x;
n--;
}
return ret;
}
};

(2)二分法:accepted

class Solution {
public:
double pow(double x, int n) {
//double ret=1.0;
if(x==1.0 )
return 1.0;
if(x==-1.0)
{
if(n%2==0)
return 1.0;
else
return -1.0;
}
if(n==0)
return 1.0;
if(n<0)
return 1.0/pow(x,-n);
double half=pow(x,n>>1);
if(n%2==0)
return half*half;
else
return x*half*half;
}
};

(3)

为了正确计算x的n次幂,还须要考虑到下面一些情况:

1) x取值为0时。0的正数次幂是1,而负数次幂是没有意义的;推断x是否等于0不能直接用“==”。

2) 对于n取值INT_MIN时。-n并非INT_MAX。这时须要格外小心。

3) 尽量使用移位运算来取代除法运算,加快算法运行的速度。

class Solution {
public:
double pow(double x, int n) {
// Start typing your C/C++ solution below
// DO NOT write int main() function
if(n<0)
{
if(n==INT_MIN)
return 1.0 / (pow(x,INT_MAX)*x);
else
return 1.0 / pow(x,-n);
}
if(n==0)
return 1.0;
double ans = 1.0 ;
for(;n>0; x *= x, n>>=1)
{
if(n&1>0)
ans *= x;
}
return ans;
}
};

leetcode || 50、Pow(x, n)的更多相关文章

  1. 力扣Leetcode 50. 实现Pow(x, n)

    实现Pow(x, n) 实现 pow(x, n) ,即计算 x 的 n 次幂函数. 示例 1: 输入: 2.00000, 10 输出: 1024.00000 示例 2: 输入: 2.10000, 3 ...

  2. 50、[源码]-Spring容器创建-Bean创建完成

    50.[源码]-Spring容器创建-Bean创建完成 11.finishBeanFactoryInitialization(beanFactory);初始化所有剩下的单实例bean: beanFac ...

  3. leetcode 50. Pow(x, n) 、372. Super Pow

    50. Pow(x, n) 372. Super Pow https://www.cnblogs.com/grandyang/p/5651982.html https://www.jianshu.co ...

  4. [LeetCode] 50. Pow(x, n) 求x的n次方

    Implement pow(x, n), which calculates x raised to the power n(xn). Example 1: Input: 2.00000, 10 Out ...

  5. LeetCode 50. Pow(x, n) 12

    50. Pow(x, n) 题目描述 实现 pow(x, n),即计算 x 的 n 次幂函数. 每日一算法2019/5/15Day 12LeetCode50. Pow(x, n) 示例 1: 输入: ...

  6. LeetCode - 50. Pow(x, n)

    50. Pow(x, n) Problem's Link ----------------------------------------------------------------------- ...

  7. LeetCode 50 Pow(x, n) (实现幂运算)

    题目链接:https://leetcode.com/problems/powx-n/?tab=Description   Problem:实现幂运算即 pow(x,n)   设形式为pow(x,n)  ...

  8. Java实现 LeetCode 50 Pow(x,n)

    50. Pow(x, n) 实现 pow(x, n) ,即计算 x 的 n 次幂函数. 示例 1: 输入: 2.00000, 10 输出: 1024.00000 示例 2: 输入: 2.10000, ...

  9. LeetCode 50 - Pow(x, n) - [快速幂]

    实现 pow(x, n) ,即计算 x 的 n 次幂函数. 示例 1: 输入: 2.00000, 10输出: 1024.00000 示例 2: 输入: 2.10000, 3输出: 9.26100 示例 ...

随机推荐

  1. PCB WCF Web接口增减参数后,在客户端不更新的情况,是否影响客户端,评估测试

    1.目的:由于接口众多,服务端变更接口,会造成服务停用更新,造成客户端不能使用或报错, 在此评估[Web中心]此服务端,接口接口参数增加或减少,是否对客户端造成影响 2.评估内容:服务端增加单值参数, ...

  2. Win10重置 系统诸多设置或者菜单点击无效或者异常信息回复办法

    cmd: 输入下列脚本重新注册DLL文件,待执行完毕后重启电脑 for %1 in (%windir%\system32\*.dll) do regsvr32.exe /s %1

  3. 3.sql基础

    sql语句是和dbms交谈专用的语句,不同dbms都认sql语法 sql语句中字符串用单引号 sql语句是大小写不敏感的,不敏感指的是sql关键字,字符串值还是大小写敏感的 创建表.删除表不仅可以手工 ...

  4. vue-pdf的使用方法及解决在线打印预览乱码

    最近在用vue做项目的时候,页面中需要展示后端返回的PDF文件,于是便用到了vue-pdf,其使用方法为 : npm install --save vue-pdf 官网地址:https://www.n ...

  5. IE浏览器发展史

  6. C# 禁止WebBrowser网页跳转时发出的声音

    ; const int SET_FEATURE_ON_PROCESS = 0x00000002; [DllImport("urlmon.dll")] [PreserveSig] [ ...

  7. [Advanced Algorithm] - Inventory Update

    题目 依照一个存着新进货物的二维数组,更新存着现有库存(在 arr1 中)的二维数组. 如果货物已存在则更新数量 . 如果没有对应货物则把其加入到数组中,更新最新的数量. 返回当前的库存数组,且按货物 ...

  8. S-HR远程调试

  9. flex记忆

    ._rebate { display: -webkit-box; display: -moz-box; display: -webkit-flex; display: -moz-flex; displ ...

  10. 转载:Java中的Checked Exception——美丽世界中潜藏的恶魔?

    转自 Amber-Garden 的 博客 https://www.cnblogs.com/loveis715/p/4596551.html 在使用Java编写应用的时候,我们常常需要通过第三方类库来帮 ...