概率DP

dp[j][d] 表示不经过i点走d步到j的概率, dp[j][d]=sigma ( dp[k][d-1] * Probability )

ans = sigma ( dp[j][D] )

Walk

Time Limit: 30000/15000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)

Total Submission(s): 401    Accepted Submission(s): 261

Special Judge

Problem Description
I used to think I could be anything, but now I know that I couldn't do anything. So I started traveling.



The nation looks like a connected bidirectional graph, and I am randomly walking on it. It means when I am at node i, I will travel to an adjacent node with the same probability in the next step. I will pick up the start node randomly (each node in the graph
has the same probability.), and travel for d steps, noting that I may go through some nodes multiple times.



If I miss some sights at a node, it will make me unhappy. So I wonder for each node, what is the probability that my path doesn't contain it.
 
Input
The first line contains an integer T, denoting the number of the test cases.



For each test case, the first line contains 3 integers n, m and d, denoting the number of vertices, the number of edges and the number of steps respectively. Then m lines follows, each containing two integers a and b, denoting there is an edge between node
a and node b.



T<=20, n<=50, n-1<=m<=n*(n-1)/2, 1<=d<=10000. There is no self-loops or multiple edges in the graph, and the graph is connected. The nodes are indexed from 1.
 
Output
For each test cases, output n lines, the i-th line containing the desired probability for the i-th node.



Your answer will be accepted if its absolute error doesn't exceed 1e-5.
 
Sample Input
2
5 10 100
1 2
2 3
3 4
4 5
1 5
2 4
3 5
2 5
1 4
1 3
10 10 10
1 2
2 3
3 4
4 5
5 6
6 7
7 8
8 9
9 10
4 9
 
Sample Output
0.0000000000
0.0000000000
0.0000000000
0.0000000000
0.0000000000
0.6993317967
0.5864284952
0.4440860821
0.2275896991
0.4294074591
0.4851048742
0.4896018842
0.4525044250
0.3406567483
0.6421630037
 
Source
 

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector> using namespace std; const int maxn=10010; int n,m,D;
vector<int> g[maxn];
double dp[55][maxn]; int main()
{
int T_T;
scanf("%d",&T_T);
while(T_T--)
{
scanf("%d%d%d",&n,&m,&D);
for(int i=0;i<=n+1;i++) g[i].clear();
while(m--)
{
int a,b;
scanf("%d%d",&a,&b);
g[a].push_back(b);
g[b].push_back(a);
}
for(int i=1;i<=n;i++)
{
memset(dp,0,sizeof(dp));
for(int j=1;j<=n;j++)
{
if(i!=j) dp[j][0]=1.0/n;
} for(int d=1;d<=D;d++)
{
for(int j=1;j<=n;j++)
{
if(j==i) continue;
for(int k=0,sz=g[j].size();k<sz;k++)
{
int v=g[j][k];
if(v!=i) dp[j][d]+=dp[v][d-1]*(1./g[v].size());
}
}
} double ans=0.0;
for(int j=1;j<=n;j++)
{
if(i!=j) ans+=dp[j][D];
}
printf("%.10lf\n",ans);
}
}
return 0;
}

HDOJ 5001 Walk的更多相关文章

  1. BFS+贪心 HDOJ 5335 Walk Out

    题目传送门 /* 题意:求从(1, 1)走到(n, m)的二进制路径值最小 BFS+贪心:按照标程的作法,首先BFS搜索所有相邻0的位置,直到1出现.接下去从最靠近终点的1开始, 每一次走一步,不走回 ...

  2. 离散化+BFS HDOJ 4444 Walk

    题目传送门 /* 题意:问一个点到另一个点的最少转向次数. 坐标离散化+BFS:因为数据很大,先对坐标离散化后,三维(有方向的)BFS 关键理解坐标离散化,BFS部分可参考HDOJ_1728 */ # ...

  3. Hdu 5001 Walk 概率dp

    Walk Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=5001 Desc ...

  4. HDU - 5001 Walk(概率dp+记忆化搜索)

    Walk I used to think I could be anything, but now I know that I couldn't do anything. So I started t ...

  5. HDU 5001 Walk (暴力、概率dp)

    Walk Time Limit: 30000/15000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) Total Sub ...

  6. HDU 5001 Walk

    解题思路:这是一道简单的概率dp,只要处理好相关的细节就可以了. dp[d][i]表示走d步时走到i的改概率,具体参考代码: #include<cstdio> #include<cs ...

  7. hdoj 5335 Walk Out

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5335 #include<stdio.h> #include<cstring> ...

  8. 【HDOJ】4579 Random Walk

    1. 题目描述一个人沿着一条长度为n个链行走,给出了每秒钟由i到j的概率($i,j \in [1,n]$).求从1开始走到n个时间的期望. 2. 基本思路显然是个DP.公式推导也相当容易.不妨设$dp ...

  9. HDOJ 1009. Fat Mouse' Trade 贪心 结构体排序

    FatMouse' Trade Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) ...

随机推荐

  1. vue.js代码开发最常见的功能集合

    1:点击新增按钮跳出新页面 <span class="inquire" @click="addNew">新增</span> 在方法中,添 ...

  2. 读《互联网创业password》之随想

    活动地址:http://blog.csdn.net/blogdevteam/article/details/38657235. 现如今.互联网已经深深的影响了中国人的日常生活习惯,曾经那种通过网络进行 ...

  3. 使用dotcloud免费ssh

    使用dotcloud免费ssh https://www.dotcloud.com一个项目在线托管网站,注册后可以免费托管两个项目. 注册帐号,在ubuntu中执行下面命令,安装dotcloud环境 s ...

  4. 2.Web开发过程流程图

    转自:https://blog.csdn.net/hello_simon/article/details/19993343 最近公司在进行一系列新模块的开发,在痛苦开发的过程中,大家不时在一起进行总结 ...

  5. HTML基础第三讲---字体

    转自:https://i.cnblogs.com/posts?categoryid=1121494 同样我们在这里继续讲一下它的body,因为它能直观的让大家观察到你所学到的成果. 这一讲,我们来学习 ...

  6. Linux体系结构

    linux内核结构: system call interface (SCI层) 为用户空间提供了一套标准的系统调用函数来访问linux内核. process management (PM层) 进程管理 ...

  7. python关于字典的操作

    https://www.cnblogs.com/RENQIWEI1995/p/7931374.html 最常用的代码举例: dict = {'Name': 'Zara', 'Age': 7, 'Cla ...

  8. 1. vue环境搭建和配置

      const 相对于 var # 全局安装 vue-cli install可以简写成i 1.$ npm install --global vue-cli # 创建一个基于 webpack 模板的新项 ...

  9. POJ 1166 The Clocks 高斯消元 + exgcd(纯属瞎搞)

    依据题意可构造出方程组.方程组的每一个方程格式均为:C1*x1 + C2*x2 + ...... + C9*x9 = sum + 4*ki; 高斯消元构造上三角矩阵,以最后一个一行为例: C*x9 = ...

  10. angular 设置全局常量

    一:在项目核心文件core.module.ts中设置全局静态常量 解释:相当于自动注入到inject中. providers:[ { provide:'BASE_CONFIG', useValue:' ...