time limit per test4 seconds

memory limit per test256 megabytes

inputstandard input

outputstandard output

All our characters have hobbies. The same is true for Fedor. He enjoys shopping in the neighboring supermarket.

The goods in the supermarket have unique integer ids. Also, for every integer there is a product with id equal to this integer. Fedor has n discount coupons, the i-th of them can be used with products with ids ranging from li to ri, inclusive. Today Fedor wants to take exactly k coupons with him.

Fedor wants to choose the k coupons in such a way that the number of such products x that all coupons can be used with this product x is as large as possible (for better understanding, see examples). Fedor wants to save his time as well, so he asks you to choose coupons for him. Help Fedor!

Input

The first line contains two integers n and k (1 ≤ k ≤ n ≤ 3·105) — the number of coupons Fedor has, and the number of coupons he wants to choose.

Each of the next n lines contains two integers li and ri ( - 109 ≤ li ≤ ri ≤ 109) — the description of the i-th coupon. The coupons can be equal.

Output

In the first line print single integer — the maximum number of products with which all the chosen coupons can be used. The products with which at least one coupon cannot be used shouldn’t be counted.

In the second line print k distinct integers p1, p2, …, pk (1 ≤ pi ≤ n) — the ids of the coupons which Fedor should choose.

If there are multiple answers, print any of them.

Examples

input

4 2

1 100

40 70

120 130

125 180

output

31

1 2

input

3 2

1 12

15 20

25 30

output

0

1 2

input

5 2

1 10

5 15

14 50

30 70

99 100

output

21

3 4

Note

In the first example if we take the first two coupons then all the products with ids in range [40, 70] can be bought with both coupons. There are 31 products in total.

In the second example, no product can be bought with two coupons, that is why the answer is 0. Fedor can choose any two coupons in this example.

【题目链接】:http://codeforces.com/contest/754/problem/D

【题解】



题意:

给你N个区间,让你从中选出K个区间,要求这K个区间的并集的大小最大;

做法:

将所有的区间的左端点升序排;

然后从左到右依次处理区间;

在处理区间的过程中,维护大小为K-1的区间的右端点的一个优先队列;(队首最小,递增)

每处理到一个区间i;

如果队列的大小为K-1则更新答案ans

ans = max(ans,min(a[i].r-a[i].l+1,que.top()-a[i].l+1));

然后把a[i].r加入队列,如果队列大小大于k-1,则pop()->去掉最小的那个元素;

因为我们每次都去掉最小的右端点;

则我们在处理第i个区间的时候,肯定是尽可能的增加这个a[i].l的“价值”;

尽量用一个更大的r和它配对;

这样贪心地想一下

每次枚举的区间当然就是最大的符合要求的区间了;

因为我们枚举了每一个区间的左端点,作为最后的答案区间的左端点;

因此算法是正确的;

又根据这个题目的对称性(那个区间肯定是被k-1个左端点,k-1个右端点包围的);

所以如果从右往左,也只能得到相同的答案,因此没必要再按右端点升序排再从

右到左处理;

最后O(N)

找一下区间范围在答案区间内的K个区间就好(任意都可以,只要包括);



【完整代码】

#include <bits/stdc++.h>
using namespace std;
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define LL long long
#define rep1(i,a,b) for (int i = a;i <= b;i++)
#define rep2(i,a,b) for (int i = a;i >= b;i--)
#define mp make_pair
#define pb push_back
#define fi first
#define se second
#define rei(x) scanf("%d",&x)
#define rel(x) scanf("%I64d",&x) typedef pair<int,int> pii;
typedef pair<LL,LL> pll; //const int MAXN = x;
const int dx[9] = {0,1,-1,0,0,-1,-1,1,1};
const int dy[9] = {0,0,0,-1,1,-1,1,-1,1};
const double pi = acos(-1.0); int n,k;
vector <pair<pii,int> > v;
priority_queue <int,vector <int>,greater<int> > que; int main()
{
//freopen("F:\\rush.txt","r",stdin);
rei(n);rei(k);
v.resize(n);
rep1(i,0,n-1)
rei(v[i].fi.fi),rei(v[i].fi.se),v[i].se=i+1;
sort(v.begin(),v.end());
int ans = 0,L,R;
rep1(i,0,n-1)
{
int len = que.size();
if (len==k-1)
{
int lim = v[i].fi.se-v[i].fi.fi+1;
if (!que.empty())
lim = min(lim,que.top()-v[i].fi.fi+1);
if (lim>ans)
{
ans = lim;
L = v[i].fi.fi;
}
}
que.push(v[i].fi.se);
len = que.size();
if (len>k-1)
que.pop();
}
printf("%d\n",ans);
if (ans==0)
for (int i = 1;i<=k;i++)
printf("%d ",i);
for (int i = 0;i<=n-1 && k;i++)
if (v[i].fi.fi<=L && L+ans-1 <= v[i].fi.se)
{
k--;
printf("%d ",v[i].se);
}
return 0;
}

【codeforces 754D】Fedor and coupons的更多相关文章

  1. 【Codeforces 467D】Fedor and Essay

    Codeforces 467 D 题意:给\(m​\)个单词,以及\(n​\)个置换关系,问将\(m​\)个单词替换多次后其中所含的最少的\(R​\)的数量以及满足这个数量的最短总长度 思路:首先将置 ...

  2. 【codeforces 415D】Mashmokh and ACM(普通dp)

    [codeforces 415D]Mashmokh and ACM 题意:美丽数列定义:对于数列中的每一个i都满足:arr[i+1]%arr[i]==0 输入n,k(1<=n,k<=200 ...

  3. 【codeforces 707E】Garlands

    [题目链接]:http://codeforces.com/contest/707/problem/E [题意] 给你一个n*m的方阵; 里面有k个联通块; 这k个联通块,每个连通块里面都是灯; 给你q ...

  4. 【codeforces 707C】Pythagorean Triples

    [题目链接]:http://codeforces.com/contest/707/problem/C [题意] 给你一个数字n; 问你这个数字是不是某个三角形的一条边; 如果是让你输出另外两条边的大小 ...

  5. 【codeforces 709D】Recover the String

    [题目链接]:http://codeforces.com/problemset/problem/709/D [题意] 给你一个序列; 给出01子列和10子列和00子列以及11子列的个数; 然后让你输出 ...

  6. 【codeforces 709B】Checkpoints

    [题目链接]:http://codeforces.com/contest/709/problem/B [题意] 让你从起点开始走过n-1个点(至少n-1个) 问你最少走多远; [题解] 肯定不多走啊; ...

  7. 【codeforces 709C】Letters Cyclic Shift

    [题目链接]:http://codeforces.com/contest/709/problem/C [题意] 让你改变一个字符串的子集(连续的一段); ->这一段的每个字符的字母都变成之前的一 ...

  8. 【Codeforces 429D】 Tricky Function

    [题目链接] http://codeforces.com/problemset/problem/429/D [算法] 令Si = A1 + A2 + ... + Ai(A的前缀和) 则g(i,j) = ...

  9. 【Codeforces 670C】 Cinema

    [题目链接] http://codeforces.com/contest/670/problem/C [算法] 离散化 [代码] #include<bits/stdc++.h> using ...

随机推荐

  1. 洛谷 P1054 等价表达式

    洛谷 P1054 等价表达式 题目描述 明明进了中学之后,学到了代数表达式.有一天,他碰到一个很麻烦的选择题.这个题目的题干中首先给出了一个代数表达式,然后列出了若干选项,每个选项也是一个代数表达式, ...

  2. 【SSH高速进阶】——struts2简单的实例

    近期刚刚入门struts2.这里做一个简单的struts2实例来跟大家一起学习一下. 本例实现最简单的登陆,仅包括两个页面:login.jsp 用来输入username与password:succes ...

  3. HDU 3584 Cube (三维树状数组)

    Problem Description Given an N*N*N cube A, whose elements are either 0 or 1. A[i, j, k] means the nu ...

  4. css实现水波纹效果

    1. HTML 代码: <div class="example"> <div class="dot"></div> < ...

  5. React组件之间通过Props传值的技巧(小案例,帮助体会理解props、state、受控组件和非受控组件等)

    本文重要是根据react小书上的一个很简单的例子改编的,加上自己的学习理解,希望可以通过实际案例让大家对概念有更清晰的理解,当然也希望能一块学习. import React,{Component} f ...

  6. document.write的注意点

    如果给button点击事件添加document.write会消除页面所有元素,包括button按钮 <!DOCTYPE html> <html> <head> &l ...

  7. Docker---(3)Docker常用命令

    原文:Docker---(3)Docker常用命令 版权声明:欢迎转载,请标明出处,如有问题,欢迎指正!谢谢!微信:w1186355422 https://blog.csdn.net/weixin_3 ...

  8. 把java程序打包成.exe

    准备工作:将可执行的jar包跟资源跟第三方包都放到一个目录下. 能够将jre包也放入里面.这样在没有安装jre的情况下也能够执行. watermark/2/text/aHR0cDovL2Jsb2cuY ...

  9. shell学习四十天----awk的惊人表现

    awk的惊人表现 awk能够胜任差点儿全部的文本处理工作.     awk 调用 1.调用awk: 方式一:命令行方式 awk [-F field-separator ] 'commands' inp ...

  10. Altium Designer中距离的测量

    Ctrl+M 清除测量标签:点击右下角的清除按键