3626: [LNOI2014]LCA

Time Limit: 10 Sec  Memory Limit: 128 MB

Submit: 1266  Solved: 448

[Submit][Status][

id=3626" style="color:blue; text-decoration:none">Discuss]

Description

给出一个n个节点的有根树(编号为0到n-1,根节点为0)。

一个点的深度定义为这个节点到根的距离+1。

设dep[i]表示点i的深度,LCA(i,j)表示i与j的近期公共祖先。

有q次询问,每次询问给出l r z。求sigma_{l<=i<=r}dep[LCA(i,z)]。

(即,求在[l,r]区间内的每一个节点i与z的近期公共祖先的深度之和)

Input

第一行2个整数n q。

接下来n-1行,分别表示点1到点n-1的父节点编号。

接下来q行,每行3个整数l r z。

Output

输出q行。每行表示一个询问的答案。

每一个答案对201314取模输出

Sample Input

5 2

0

0

1

1

1 4 3

1 4 2


Sample Output

8

5


HINT

共5组数据,n与q的规模分别为10000,20000,30000,40000,50000。

Source

这道题思路非常好!

假设把x到根的权值所有加1。那么y到根的权值和就添加dep[lca(x,y)]。

扩展到区间,假设把[l,r]的点到根的权值所有加1,那么z到根的权值和就添加∑(l≤i≤r)dep[lca(i,z)]。

那么对于每个(l,r,z)的询问。我们就能够拆成两个前缀和来离线处理了。

链查询,树链剖分+线段树。

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<cstdlib>
#include<algorithm>
#define F(i,j,n) for(int i=j;i<=n;i++)
#define D(i,j,n) for(int i=j;i>=n;i--)
#define ll long long
#define maxn 50005
#define mod 201314
using namespace std;
struct edge{int next,to;}e[maxn];
struct seg{int l,r,sum,tag;}t[maxn*4];
struct data{int next,z,pos,tag;}g[maxn*2];
int n,m,cnt,tot;
int p[maxn],sz[maxn],fa[maxn],son[maxn],ans[maxn];
int head[maxn],belong[maxn];
inline int read()
{
int x=0,f=1;char ch=getchar();
while (ch<'0'||ch>'9'){if (ch=='-') f=-1;ch=getchar();}
while (ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
return x*f;
}
inline void add_edge(int x,int y)
{
e[++cnt]=(edge){head[x],y};head[x]=cnt;
}
inline void add_data(int x,int y,int num,int tg)
{
g[++cnt]=(data){head[x],y,num,tg};head[x]=cnt;
}
inline void dfs1(int x)
{
sz[x]=1;
for(int i=head[x];i;i=e[i].next)
{
int y=e[i].to;
fa[y]=x;
dfs1(y);
sz[x]+=sz[y];
if (sz[y]>sz[son[x]]) son[x]=y;
}
}
inline void dfs2(int x,int chain)
{
belong[x]=chain;p[x]=++tot;
if (son[x]) dfs2(son[x],chain);
for(int i=head[x];i;i=e[i].next)
if (e[i].to!=son[x]) dfs2(e[i].to,e[i].to);
}
inline void update(int k,int z)
{
t[k].sum+=z*(t[k].r-t[k].l+1);
t[k].tag+=z;
}
inline void pushdown(int k)
{
if (!t[k].tag) return;
update(k<<1,t[k].tag);update(k<<1|1,t[k].tag);
t[k].tag=0;
}
inline void pushup(int k)
{
t[k].sum=t[k<<1].sum+t[k<<1|1].sum;
}
inline void build(int k,int l,int r)
{
t[k].l=l;t[k].r=r;t[k].sum=0;
if (l==r) return;
int mid=(l+r)>>1;
build(k<<1,l,mid);build(k<<1|1,mid+1,r);
}
inline int query(int k,int x,int y)
{
if (t[k].l==x&&t[k].r==y) return t[k].sum;
int mid=(t[k].l+t[k].r)>>1;
pushdown(k);
if (y<=mid) return query(k<<1,x,y);
else if (x>mid) return query(k<<1|1,x,y);
else return query(k<<1,x,mid)+query(k<<1|1,mid+1,y);
}
inline void add(int k,int x,int y,int z)
{
if (t[k].l==x&&t[k].r==y){update(k,z);return;}
int mid=(t[k].l+t[k].r)>>1;
pushdown(k);
if (y<=mid) add(k<<1,x,y,z);
else if (x>mid) add(k<<1|1,x,y,z);
else add(k<<1,x,mid,z),add(k<<1|1,mid+1,y,z);
pushup(k);
}
inline void solveadd(int x)
{
while (belong[x]!=1)
{
add(1,p[belong[x]],p[x],1);
x=fa[belong[x]];
}
add(1,p[1],p[x],1);
}
inline int solvesum(int x)
{
int sum=0;
while (belong[x]!=1)
{
sum+=query(1,p[belong[x]],p[x]);
x=fa[belong[x]];
}
sum+=query(1,p[1],p[x]);
return sum;
}
int main()
{
n=read();m=read();
F(i,2,n) add_edge(read()+1,i);
dfs1(1);dfs2(1,1);
build(1,1,n);
cnt=tot=0;
memset(head,0,sizeof(head));
F(i,1,m)
{
int l=read()+1,r=read()+1,z=read()+1;
add_data(l-1,z,i,-1);add_data(r,z,i,1);
}
F(i,1,n)
{
solveadd(i);
for(int j=head[i];j;j=g[j].next)
ans[g[j].pos]+=solvesum(g[j].z)*g[j].tag;
}
F(i,1,m) printf("%d\n",ans[i]%mod);
}

bzoj3626【LNOI2014】LCA的更多相关文章

  1. 【LNOI2014】LCA

    题面 题解 考察\(dep[\mathrm{LCA}(i, x)]\)的性质,发现它是\(i\)和\(x\)的链交的长度. 那么对每个\(i\)所在的链打一个区间加标记,询问时算一下\(x\)所在的链 ...

  2. 【LNOI2014】【BZOJ3626】NOIp2018模拟(三) LCA

    Description 给出一个n个节点的有根树(编号为0到n-1,根节点为0).一个点的深度定义为这个节点到根的距离+1.设$dep[i]$表示点i的深度,$lca(i,j)$表示i与j的最近公共祖 ...

  3. 【P4211 LNOI2014】LCA——树链剖分 +询问离线

    (7.16晚)更完先在B站颓一会儿-- --------------------------------------------------------------- (以下为luogu题面) 题目描 ...

  4. 【Homework】LCA&RMQ

    我校是神校,作业竟然选自POJ,难道不知道“珍爱生命 勿刷POJ”么? 所有注明模板题的我都十分傲娇地没有打,于是只打了6道题(其实模板题以前应该打过一部分但懒得找)(不过感觉我模板还是不够溜要找个时 ...

  5. 【模板】LCA

    代码如下 #include <bits/stdc++.h> using namespace std; const int maxn=5e5+10; inline int read(){ i ...

  6. 【模板】Lca倍增法

    Codevs 1036 商务旅行 #include<cstdio> #include<cmath> #include<algorithm> using namesp ...

  7. 【HNOI2015】开店

    题面 题解 树链剖分 + 主席树 先考虑一个简单一点的问题: [LNOI2014]LCA 我们考察\(dep[\mathrm{LCA}(i, x)]\)的性质,发现它是\(i\)和\(x\)的链交的长 ...

  8. 【51nod】1766 树上的最远点对

    [题意]给定n个点的树,m次求[a,b]和[c,d]中各选出一个点的最大距离.abcd是标号区间,n,m<=10^5 [算法]LCA+树的直径理论+线段树 [题解] 树的直径性质:距离树上任意点 ...

  9. 【BZOJ】1776: [Usaco2010 Hol]cowpol 奶牛政坛

    [题意]给定n个点的树,每个点属于一个分类,求每个分类中(至少有2个点)最远的两点距离.n<=200000 [算法]LCA [题解]结论:树上任意点集中最远的两点一定包含点集中深度最大的点(求树 ...

随机推荐

  1. Swift入门(四)——可选类型(Optionals)与断言(Assert)

    可选类型是什么? 首先看一个问题,Swift中String类型的变量有一个叫做toInt的方法,能够把String类型变量转换为Int类型变量. var stringValue = "5&q ...

  2. gitlab一键安装 笔记

    0 简单介绍bitnami和gitlab bitnami BitNami是一个开源项目,该项目产生的开源软件包安装 Web应用程序和解决方式堆栈.以及虚拟设备. bitnami主办Bitrock公司成 ...

  3. Spring-SpringJdbcTemlate配置介绍

    使用spring的jdbcTemplate进一步操作JDBC 一.普通配置  SpringJdbcTemplate连接数据库并操作数据 1.applicationContext.xml 1.1 建立D ...

  4. hdu 2151

    就是一个dp,数组内存的步数, 数组没清空,wa了一次 #include<cstdio> #include<algorithm> #include<cstring> ...

  5. SpringMVC-Interceptor拦截Session登录

    背景: 开发的项目都须要账号password登录才干够查看站点的内容,所以我们设计时须要考虑,用户进入站点仅仅能从一个我们设计的规范通道进入即通过注冊的账号password登录,其它方法都是非法的和不 ...

  6. SQL从头開始

    SQL 分为两个部分:数据操作语言 (DML) 和 数据定义语言 (DDL) 查询和更新指令构成了 SQL 的 DML 部分: SELECT - 从数据库表中获取数据 UPDATE - 更新数据库表中 ...

  7. c语言实现皇帝翻牌游戏

    一个综合的游戏,对所学的知识进行整合!融会贯通! #include <stdio.h> #include <stdlib.h> #include <string.h> ...

  8. js闭包概念

    含义:闭包是一个概念,它描述了函数执行完毕内存释放后,依然内存驻留的一个现象,只要把握这个核心概念,闭包就不难理解了 function a(){      var i=0;      function ...

  9. Hibernate框架学习(六)——一对多&多对一关系

    一.关系表达 1.表中的表达 2.实体中的表达 3.orm元数据中的表达 一对多:(在Customer.hbm.xml中添加) 多对一:(在LinkMan.hbm.xml中添加) 最后别忘了在hibe ...

  10. PHP单词表

    输出语句printechovar_dumpprint_rprintf变量的操作unset预定义变量$_SERVER$_GET$_POST$_REQUEST$_COOKIE,$_SESSION 会话技术 ...