pid=5407">【HDOJ 5407】 CRB and Candies



赛后看这题题解仅仅有满眼的迷茫………………

g(N) = LCM(C(N,0),C(N,1),...,C(N,N))

f(n)\
=\ LCM(1, 2, ..., n)f(n) = LCM(1,2,...,n),
the fact g(n)\
=\ f(n+1) / (n+1)g(n) = f(n+1)/(n+1)

f(n)\ =\ LCM(1, 2, ..., n)f(1)
= 1

If n\
=p^{k}n =p​k​​ then f(n)\
=\ f(n-1) \times \ pf(n) = f(n−1)× p,
else f(n)\
=\ f(n-1)f(n) = f(n−1).

和不断的woc…… 后来QAQ巨找到了推导的文章。

。。

恩……贴上来……

http://www.zhihu.com/question/34859879

感觉我有公式恐惧症。。

看到长串公式就犯晕= = 巨巨们研究研究吧…………

感觉依据题解能做出来已经非常好了

事实上这题另一点是要取余 因为须要取余 不能做除法 因此要求个分母的乘法逆元 刚好在攻数论的扩欧,扩欧小费马都能做 前一篇有扩欧的不错的帖子链接 有兴趣的能够去瞅瞅

本题代码例如以下:

#include <iostream>
#include <cstdio>
#include <cstring> using namespace std;
#define sz 1000000
#define ll long long
const int mod = 1e9+7; int p[sz+1];
ll f[sz+1]; bool ok(ll x)
{
int t = p[x];
while(x%t == 0 && x > 1) x /= t;
return x == 1;
} void Init()
{
int i,j;
for(i = 1; i <= sz; ++i) p[i] = i;
for(i = 2; i <= sz; ++i)
if(p[i] == i)
for(j = i+i; j <= sz; j += i)
if(p[j] == j) p[j] = i; f[0] = 1;
for(i = 1; i <= sz; ++i)
{
if(ok(i)) f[i] = f[i-1]*p[i]%mod;
else f[i] = f[i-1];
}
}
//扩欧
//int e_gcd(int a,int b,int &x,int &y)
//{
// if(!b)
// {
// x = 1;
// y = 0;
// return a;
// }
// ll tmp = x,ans = e_gcd(b,a%b,x,y);
// tmp = x;
// x = y;
// y = tmp - a/b*y;
// return ans;
//} ll pow(ll a,int m)
{
ll ans = 1;
for(;m; m >>= 1, a= a*a%mod)
if(m&1) ans = ans*a%mod;
return ans;
} ll cal(int a,int m)
{
//扩欧
// int x,y;
// int gcd = e_gcd(a,m,x,y);
// return (x/gcd+m)%m;
//小费马
return pow(a,m-2);
} int main()
{
Init();
int t,n;
scanf("%d",&t);
while(t--)
{
scanf("%d",&n);
printf("%lld\n",f[n+1]*cal(n+1,mod)%mod);
}
return 0;
}

【HDOJ 5407】 CRB and Candies (大犇推导的更多相关文章

  1. 数论 HDOJ 5407 CRB and Candies

    题目传送门 题意:求LCM (C(N,0),C(N,1),...,C(N,N)),LCM是最小公倍数的意思,C函数是组合数. 分析:先上出题人的解题报告 好吧,数论一点都不懂,只明白f (n + 1) ...

  2. Hdu 5407 CRB and Candies (找规律)

    题目链接: Hdu 5407 CRB and Candies 题目描述: 给出一个数n,求lcm(C(n,0),C[n,1],C[n-2]......C[n][n-2],C[n][n-1],C[n][ ...

  3. HDU 5407——CRB and Candies——————【逆元+是素数次方的数+公式】

    CRB and Candies Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)T ...

  4. 2015 Multi-University Training Contest 10 hdu 5407 CRB and Candies

    CRB and Candies Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)T ...

  5. HDU 5407 CRB and Candies(LCM +最大素因子求逆元)

    [题目链接]pid=5407">click here~~ [题目大意]求LCM(Cn0,Cn1,Cn2....Cnn)%MOD 的值 [思路]来图更直观: 这个究竟是怎样推出的.说实话 ...

  6. LCM性质 + 组合数 - HDU 5407 CRB and Candies

    CRB and Candies Problem's Link Mean: 给定一个数n,求LCM(C(n,0),C(n,1),C(n,2)...C(n,n))的值,(n<=1e6). analy ...

  7. HDU 5407 CRB and Candies

    题意:给一个正整数k,求lcm((k, 0), (k, 1), ..., (k, k)) 解法:在oeis上查了这个序列,得知答案即为lcm(1, 2, ..., k + 1) / (k + 1),而 ...

  8. hdu 5407 CRB and Candies(组合数+最小公倍数+素数表+逆元)2015 Multi-University Training Contest 10

    题意: 输入n,求c(n,0)到c(n,n)的所有组合数的最小公倍数. 输入: 首行输入整数t,表示共有t组测试样例. 每组测试样例包含一个正整数n(1<=n<=1e6). 输出: 输出结 ...

  9. CRB and Candies LCM 性质

    题目 CRB and Candies 题意 \[ \text{给定正整数N,求} LCM \lbrace C \left(N , 0 \right),C\left(N , 1 \right),..., ...

随机推荐

  1. 本地配置 Redis

    1.下载 https://redis.io/ https://github.com/dmajkic/Redis/downloads 2. 2.cmd 运行: 3.切换到另外一个cmd : ok! 关于 ...

  2. 王立平--Object-c

    object-c通常写作objective-c或者obj-c,是依据C语言所衍生出来的语言.继承了C语言的特性,是扩充C的面向对象编程语言. 它主要使用于MacOSX和GNUstep这两个使用Open ...

  3. Ubuntu14.04下Mongodb数据库可视化工具安装部署步骤(图文详解)(博主推荐)

    不多说,直接上干货! 前期博客 Ubuntu14.04下Mongodb(离线安装方式|非apt-get)安装部署步骤(图文详解)(博主推荐) Ubuntu14.04下Mongodb官网安装部署步骤(图 ...

  4. 微信小程序 | 小程序的转发问题

    1.配置小程序页面静态转发信息 关于小程序转发问题,文档 在 page 页面填加了该监听函数,会在小程序右上角 ... 菜单中显示“转发”按钮: 监听函数需要 return {} 其中的内容配置转发信 ...

  5. USACO 保护花朵 Protecting the Flowers, 2007 Jan

    Description 约翰留下了 N 只奶牛呆在家里,自顾自地去干活了,这是非常失策的.他还在的时候,奶牛像 往常一样悠闲地在牧场里吃草.可是当他回来的时候,他看到了一幕惨剧:他的奶牛跑进了他的花园 ...

  6. vue-cli 3.0 安装和创建项目流程

    使用前我们先了解下3.0较2.0有哪些区别 一.3.0 新加入了 TypeScript 以及 PWA 的支持二.部分命令发生了变化: 1.下载安装  npm install -g vue@cli 2. ...

  7. E5中遍历数组的方法

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  8. 转载:【学习之家】Python中__init__.py文件的作用

    Python中__init__.py文件的作用详解 Python中__init__.py文件的作用详解 来源:学习之家 作者:xuexi110 人气:357 发布时间:2016-09-29 摘要:__ ...

  9. 指定的WSDL可能与所选的工具包不兼容

    使用LoadRunner在webservice协议下,import service的时候,报错: can not fetch WSDL,the specified WSDL datathe speci ...

  10. JWT加密

    JWT是一种加密算法,为了防止请求的信息在传输途中被拦截修改 JWT的引用: install-package jwt JWF由三部分组成:Header,Payload,Signature Payloa ...