Pig源代码分析: 简析运行计划的生成
摘要
本文通过跟代码的方式,分析从输入一批Pig-latin到输出物理运行计划(与launcher引擎有关,通常是MR运行计划。也能够是Spark RDD的运行算子)的总体流程。
不会详细涉及AST怎样解析、怎样使用了Anltr、逻辑运行计划怎样映射、逻辑运行计划怎样优化、MR运行计划怎样切分为MR Job,而是从输入一批Pig DSL到待运行的真正运行计划的关键变化步骤(方法和类)。
运行计划完整解析
入口处书Main类的main函数
/**
* The Main-Class for the Pig Jar that will provide a shell and setup a classpath appropriate
* for executing Jar files. Warning, this method calls System.exit().
*
* @param args
* -jar can be used to add additional jar files (colon separated). - will start a
* shell. -e will execute the rest of the command line as if it was input to the
* shell.
* @throws IOException
*/
public static void main(String args[]) {
// add win HADOOP_HOME
// make sure you have "winutils.exe" under /bin
// if not, download one from https://github.com/srccodes/hadoop-common-2.2.0-bin/tree/master/bin // entrance for local debug
// better try: -x spark -e cmds
System.exit(run(args, null));
}
Main -> GruntParser,这是第一步。
Main首先进行一些參数初始化(启动模式、输入类型推断、初始化类等等)。然后借助GruntParser解析输入的pig-latin脚本
grunt.exec()之后的下一个关键步骤是进入GruntParser的解析。
GruntParser里parse()会依赖PigScriptParser.jj文件。详细代码跟不进去,终于生成的是语法树。
在出现Dump操作之后,进入GruntParser的processDump方法。
这步结束之后是完毕了语法层面的解析。
PigServer-> QueryParserDriver。PigServer的parseQuery方法会进入QueryParserDriver的parse(query)方法,返回逻辑运行计划
QueryParserDriver->LogicalPlanGenerator,生成逻辑运行计划详细依靠的是LogicalPlanGenerator。
watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvcGVsaWNr/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/Center" alt="">
截止到这,是生成了逻辑运行计划。
PigServer-> HExecutionEngine。接下来是优化逻辑运行计划和生成物理运行计划。
接下来HExecutionEngine.compile(LogicalPlan, Properties)先优化逻辑运行计划。
HExecutionEngine在初始化的时候。会针对不同的情况组合不同的优化策略(disable某些规则)。
这个PlanOptimizer优化的过程在之前 逻辑运行计划优化 的文档里已经有了详细过程了。
再生成物理运行计划,
主要通过LogToPhyTranslcationVisitor内在walk遍历逻辑运行计划节点的时候,
针对不同的Op accept()时触发相应LogToPhyTranslcationVisitor的多态visit(Op)方法。实现逻辑运行计划步骤同物理运行计划步骤的映射。
接下来就是launchPlan。依据配置启动Launcher。例如以下是启动了SparkLauncher
SparkLauncher里对物理运行计划的每一个步骤进行了RDD操作的翻译(直接相应算子),运行后以SparkStats返回,内含OutputInfo信息(包含结果文件地址等信息)。
关于Pig on Spark怎样实现SparkLauncher和翻译物理运行计划算子,能够參考我的Github和这篇博文来阅读代码。
还有一条路是启动MapReduceLauncher。MRCompiler把物理运行计划翻译成MR运行计划。基本的翻译过程在compile(PO)方法里。
watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvcGVsaWNr/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/Center" alt="">
MR运行计划的翻译主要有两步。
首先是MRCompiler.compile(),把物理运行计划翻译到MapReduce运行计划
其次JobControlCompiler.compile(),输入MROperPlan,返回JobControl。这步控制MR Job队列
以上是从输入脚本到输出运行计划的总体流程。
比較粗糙,但关键步骤和过程都有。
样例
为了直观起见。我把自己跑的样例贴出来。包含pig-latin。逻辑运行计划。物理运行计划,MR运行计划。
pig-latin
REGISTER D:/tutorial.jar; raw = LOAD 'D:/github/flare-spork/tutorial/data/excite-small.log' USING PigStorage('\t') AS (user, time, query); clean1 = FILTER raw BY org.apache.pig.tutorial.NonURLDetector(query); clean2 = FOREACH clean1 GENERATE user, time, org.apache.pig.tutorial.ToLower(query) as query; houred = FOREACH clean2 GENERATE user, org.apache.pig.tutorial.ExtractHour(time) as hour, query; ngramed1 = FOREACH houred GENERATE user, hour, flatten(org.apache.pig.tutorial.NGramGenerator(query)) as ngram; ngramed2 = DISTINCT ngramed1; hour_frequency1 = GROUP ngramed2 BY (ngram, hour); hour_frequency2 = FOREACH hour_frequency1 GENERATE flatten($0), COUNT($1) as count; uniq_frequency1 = GROUP hour_frequency2 BY group::ngram; uniq_frequency2 = FOREACH uniq_frequency1 GENERATE flatten($0), flatten(org.apache.pig.tutorial.ScoreGenerator($1)); uniq_frequency3 = FOREACH uniq_frequency2 GENERATE $1 as hour, $0 as ngram, $2 as score, $3 as count, $4 as mean; filtered_uniq_frequency = FILTER uniq_frequency3 BY score > 2.0; ordered_uniq_frequency = ORDER filtered_uniq_frequency BY hour, score; dump ordered_uniq_frequency;
逻辑运行计划
#-----------------------------------------------
# New Logical Plan:
#-----------------------------------------------
ordered_uniq_frequency: (Name: LOSort Schema: hour#22:chararray,ngram#9:chararray,score#23:double,count#24:long,mean#25:double)
| |
| hour:(Name: Project Type: chararray Uid: 22 Input: 0 Column: hour)
| |
| score:(Name: Project Type: double Uid: 23 Input: 0 Column: score)
|
|---filtered_uniq_frequency: (Name: LOFilter Schema: hour#22:chararray,ngram#9:chararray,score#23:double,count#24:long,mean#25:double)
| |
| (Name: GreaterThan Type: boolean Uid: 29)
| |
| |---score:(Name: Project Type: double Uid: 23 Input: 0 Column: score)
| |
| |---(Name: Constant Type: double Uid: 28)
|
|---uniq_frequency3: (Name: LOForEach Schema: hour#22:chararray,ngram#9:chararray,score#23:double,count#24:long,mean#25:double)
| |
| (Name: LOGenerate[false,false,false,false,false] Schema: hour#22:chararray,ngram#9:chararray,score#23:double,count#24:long,mean#25:double)
| | |
| | org.apache.pig.tutorial.scoregenerator_hour_frequency2_27::hour:(Name: Project Type: chararray Uid: 22 Input: 0 Column: (*))
| | |
| | group:(Name: Project Type: chararray Uid: 9 Input: 1 Column: (*))
| | |
| | org.apache.pig.tutorial.scoregenerator_hour_frequency2_27::score:(Name: Project Type: double Uid: 23 Input: 2 Column: (*))
| | |
| | org.apache.pig.tutorial.scoregenerator_hour_frequency2_27::count:(Name: Project Type: long Uid: 24 Input: 3 Column: (*))
| | |
| | org.apache.pig.tutorial.scoregenerator_hour_frequency2_27::mean:(Name: Project Type: double Uid: 25 Input: 4 Column: (*))
| |
| |---(Name: LOInnerLoad[1] Schema: org.apache.pig.tutorial.scoregenerator_hour_frequency2_27::hour#22:chararray)
| |
| |---(Name: LOInnerLoad[0] Schema: group#9:chararray)
| |
| |---(Name: LOInnerLoad[2] Schema: org.apache.pig.tutorial.scoregenerator_hour_frequency2_27::score#23:double)
| |
| |---(Name: LOInnerLoad[3] Schema: org.apache.pig.tutorial.scoregenerator_hour_frequency2_27::count#24:long)
| |
| |---(Name: LOInnerLoad[4] Schema: org.apache.pig.tutorial.scoregenerator_hour_frequency2_27::mean#25:double)
|
|---uniq_frequency2: (Name: LOForEach Schema: group#9:chararray,org.apache.pig.tutorial.scoregenerator_hour_frequency2_27::hour#22:chararray,org.apache.pig.tutorial.scoregenerator_hour_frequency2_27::score#23:double,org.apache.pig.tutorial.scoregenerator_hour_frequency2_27::count#24:long,org.apache.pig.tutorial.scoregenerator_hour_frequency2_27::mean#25:double)
| |
| (Name: LOGenerate[true,true] Schema: group#9:chararray,org.apache.pig.tutorial.scoregenerator_hour_frequency2_27::hour#22:chararray,org.apache.pig.tutorial.scoregenerator_hour_frequency2_27::score#23:double,org.apache.pig.tutorial.scoregenerator_hour_frequency2_27::count#24:long,org.apache.pig.tutorial.scoregenerator_hour_frequency2_27::mean#25:double)
| | |
| | group:(Name: Project Type: chararray Uid: 9 Input: 0 Column: (*))
| | |
| | (Name: UserFunc(org.apache.pig.tutorial.ScoreGenerator) Type: bag Uid: 20)
| | |
| | |---hour_frequency2:(Name: Project Type: bag Uid: 16 Input: 1 Column: (*))
| |
| |---(Name: LOInnerLoad[0] Schema: group#9:chararray)
| |
| |---hour_frequency2: (Name: LOInnerLoad[1] Schema: group::ngram#9:chararray,group::hour#6:chararray,count#14:long)
|
|---uniq_frequency1: (Name: LOCogroup Schema: group#9:chararray,hour_frequency2#16:bag{#31:tuple(group::ngram#9:chararray,group::hour#6:chararray,count#14:long)})
| |
| group::ngram:(Name: Project Type: chararray Uid: 9 Input: 0 Column: group::ngram)
|
|---hour_frequency2: (Name: LOForEach Schema: group::ngram#9:chararray,group::hour#6:chararray,count#14:long)
| |
| (Name: LOGenerate[true,false] Schema: group::ngram#9:chararray,group::hour#6:chararray,count#14:long)
| | |
| | group:(Name: Project Type: tuple Uid: 10 Input: 0 Column: (*))
| | |
| | (Name: UserFunc(org.apache.pig.builtin.COUNT) Type: long Uid: 14)
| | |
| | |---ngramed2:(Name: Project Type: bag Uid: 11 Input: 1 Column: (*))
| |
| |---(Name: LOInnerLoad[0] Schema: group#10:tuple(ngram#9:chararray,hour#6:chararray))
| |
| |---ngramed2: (Name: LOInnerLoad[1] Schema: user#1:bytearray,hour#6:chararray,ngram#9:chararray)
|
|---hour_frequency1: (Name: LOCogroup Schema: group#10:tuple(ngram#9:chararray,hour#6:chararray),ngramed2#11:bag{#30:tuple(user#1:bytearray,hour#6:chararray,ngram#9:chararray)})
| |
| ngram:(Name: Project Type: chararray Uid: 9 Input: 0 Column: ngram)
| |
| hour:(Name: Project Type: chararray Uid: 6 Input: 0 Column: hour)
|
|---ngramed2: (Name: LODistinct Schema: user#1:bytearray,hour#6:chararray,ngram#9:chararray)
|
|---ngramed1: (Name: LOForEach Schema: user#1:bytearray,hour#6:chararray,ngram#9:chararray)
| |
| (Name: LOGenerate[false,false,true] Schema: user#1:bytearray,hour#6:chararray,ngram#9:chararray)
| | |
| | user:(Name: Project Type: bytearray Uid: 1 Input: 0 Column: (*))
| | |
| | hour:(Name: Project Type: chararray Uid: 6 Input: 1 Column: (*))
| | |
| | (Name: UserFunc(org.apache.pig.tutorial.NGramGenerator) Type: bag Uid: 7)
| | |
| | |---query:(Name: Project Type: chararray Uid: 5 Input: 2 Column: (*))
| |
| |---(Name: LOInnerLoad[user] Schema: user#1:bytearray)
| |
| |---(Name: LOInnerLoad[hour] Schema: hour#6:chararray)
| |
| |---(Name: LOInnerLoad[query] Schema: query#5:chararray)
|
|---houred: (Name: LOForEach Schema: user#1:bytearray,hour#6:chararray,query#5:chararray)
| |
| (Name: LOGenerate[false,false,false] Schema: user#1:bytearray,hour#6:chararray,query#5:chararray)
| | |
| | user:(Name: Project Type: bytearray Uid: 1 Input: 0 Column: (*))
| | |
| | (Name: UserFunc(org.apache.pig.tutorial.ExtractHour) Type: chararray Uid: 6)
| | |
| | |---time:(Name: Project Type: bytearray Uid: 2 Input: 1 Column: (*))
| | |
| | query:(Name: Project Type: chararray Uid: 5 Input: 2 Column: (*))
| |
| |---(Name: LOInnerLoad[user] Schema: user#1:bytearray)
| |
| |---(Name: LOInnerLoad[time] Schema: time#2:bytearray)
| |
| |---(Name: LOInnerLoad[query] Schema: query#5:chararray)
|
|---clean2: (Name: LOForEach Schema: user#1:bytearray,time#2:bytearray,query#5:chararray)
| |
| (Name: LOGenerate[false,false,false] Schema: user#1:bytearray,time#2:bytearray,query#5:chararray)
| | |
| | user:(Name: Project Type: bytearray Uid: 1 Input: 0 Column: (*))
| | |
| | time:(Name: Project Type: bytearray Uid: 2 Input: 1 Column: (*))
| | |
| | (Name: UserFunc(org.apache.pig.tutorial.ToLower) Type: chararray Uid: 5)
| | |
| | |---query:(Name: Project Type: bytearray Uid: 3 Input: 2 Column: (*))
| |
| |---(Name: LOInnerLoad[user] Schema: user#1:bytearray)
| |
| |---(Name: LOInnerLoad[time] Schema: time#2:bytearray)
| |
| |---(Name: LOInnerLoad[query] Schema: query#3:bytearray)
|
|---clean1: (Name: LOFilter Schema: user#1:bytearray,time#2:bytearray,query#3:bytearray)
| |
...
物理运行计划
|
|---ordered_uniq_frequency: POSort[bag]() - scope-70
| |
| Project[chararray][0] - scope-68
| |
| Project[double][2] - scope-69
|
|---uniq_frequency3: New For Each(false,false,false,false,false)[bag] - scope-67
| |
| Project[chararray][1] - scope-57
| |
| Project[chararray][0] - scope-59
| |
| Project[double][2] - scope-61
| |
| Project[long][3] - scope-63
| |
| Project[double][4] - scope-65
|
|---filtered_uniq_frequency: Filter[bag] - scope-53
| |
| Greater Than[boolean] - scope-56
| |
| |---Project[double][2] - scope-54
| |
| |---Constant(2.0) - scope-55
|
|---uniq_frequency2: New For Each(true,true)[bag] - scope-52
| |
| Project[chararray][0] - scope-47
| |
| POUserFunc(org.apache.pig.tutorial.ScoreGenerator)[bag] - scope-50
| |
| |---Project[bag][1] - scope-49
|
|---uniq_frequency1: Package[tuple]{chararray} - scope-44
|
|---uniq_frequency1: Global Rearrange[tuple] - scope-43
|
|---uniq_frequency1: Local Rearrange[tuple]{chararray}(false) - scope-45
| |
| Project[chararray][0] - scope-46
|
|---hour_frequency2: New For Each(true,false)[bag] - scope-42
| |
| Project[tuple][0] - scope-37
| |
| POUserFunc(org.apache.pig.builtin.COUNT)[long] - scope-40
| |
| |---Project[bag][1] - scope-39
|
|---hour_frequency1: Package[tuple]{tuple} - scope-33
|
|---hour_frequency1: Global Rearrange[tuple] - scope-32
|
|---hour_frequency1: Local Rearrange[tuple]{tuple}(false) - scope-34
| |
| Project[chararray][2] - scope-35
| |
| Project[chararray][1] - scope-36
|
|---ngramed2: PODistinct[bag] - scope-31
|
|---ngramed1: New For Each(false,false,true)[bag] - scope-30
| |
| Project[bytearray][0] - scope-23
| |
| Project[chararray][1] - scope-25
| |
| POUserFunc(org.apache.pig.tutorial.NGramGenerator)[bag] - scope-28
| |
| |---Project[chararray][2] - scope-27
|
|---houred: New For Each(false,false,false)[bag] - scope-22
| |
| Project[bytearray][0] - scope-14
| |
| POUserFunc(org.apache.pig.tutorial.ExtractHour)[chararray] - scope-18
| |
| |---Cast[chararray] - scope-17
| |
| |---Project[bytearray][1] - scope-16
| |
| Project[chararray][2] - scope-20
|
|---clean2: New For Each(false,false,false)[bag] - scope-13
| |
| Project[bytearray][0] - scope-5
| |
| Project[bytearray][1] - scope-7
| |
| POUserFunc(org.apache.pig.tutorial.ToLower)[chararray] - scope-11
| |
| |---Cast[chararray] - scope-10
| |
| |---Project[bytearray][2] - scope-9
|
|---clean1: Filter[bag] - scope-1
| |
| POUserFunc(org.apache.pig.tutorial.NonURLDetector)[boolean] - scope-4
| |
| |---Cast[chararray] - scope-3
| |
| |---Project[bytearray][2] - scope-2
|
|---raw: Load(D:/github/flare-spork/tutorial/data/excite-small.log:PigStorage(' ')) - scope-0
MR运行计划
# Map Reduce Plan
#--------------------------------------------------
MapReduce node scope-72
Map Plan
Local Rearrange[tuple]{tuple}(true) - scope-74
| |
| Project[tuple][*] - scope-73
|
|---ngramed1: New For Each(false,false,true)[bag] - scope-30
| |
| Project[bytearray][0] - scope-23
| |
| Project[chararray][1] - scope-25
| |
| POUserFunc(org.apache.pig.tutorial.NGramGenerator)[bag] - scope-28
| |
| |---Project[chararray][2] - scope-27
|
|---houred: New For Each(false,false,false)[bag] - scope-22
| |
| Project[bytearray][0] - scope-14
| |
| POUserFunc(org.apache.pig.tutorial.ExtractHour)[chararray] - scope-18
| |
| |---Cast[chararray] - scope-17
| |
| |---Project[bytearray][1] - scope-16
| |
| Project[chararray][2] - scope-20
|
|---clean2: New For Each(false,false,false)[bag] - scope-13
| |
| Project[bytearray][0] - scope-5
| |
| Project[bytearray][1] - scope-7
| |
| POUserFunc(org.apache.pig.tutorial.ToLower)[chararray] - scope-11
| |
| |---Cast[chararray] - scope-10
| |
| |---Project[bytearray][2] - scope-9
|
|---clean1: Filter[bag] - scope-1
| |
| POUserFunc(org.apache.pig.tutorial.NonURLDetector)[boolean] - scope-4
| |
| |---Cast[chararray] - scope-3
| |
| |---Project[bytearray][2] - scope-2
|
|---raw: Load(D:/github/flare-spork/tutorial/data/excite-small.log:PigStorage(' ')) - scope-0--------
Reduce Plan
Store(file:/tmp/temp1620254926/tmp-1456742965:org.apache.pig.impl.io.InterStorage) - scope-78
|
|---New For Each(true)[bag] - scope-77
| |
| Project[tuple][0] - scope-76
|
|---Package[tuple]{tuple} - scope-75--------
Global sort: false
---------------- MapReduce node scope-80
Map Plan
hour_frequency1: Local Rearrange[tuple]{tuple}(false) - scope-34
| |
| Project[chararray][2] - scope-35
| |
| Project[chararray][1] - scope-36
|
|---Load(file:/tmp/temp1620254926/tmp-1456742965:org.apache.pig.impl.io.InterStorage) - scope-79--------
Reduce Plan
Store(file:/tmp/temp1620254926/tmp2077335416:org.apache.pig.impl.io.InterStorage) - scope-81
|
|---hour_frequency2: New For Each(true,false)[bag] - scope-42
| |
| Project[tuple][0] - scope-37
| |
| POUserFunc(org.apache.pig.builtin.COUNT)[long] - scope-40
| |
| |---Project[bag][1] - scope-39
|
|---hour_frequency1: Package[tuple]{tuple} - scope-33--------
Global sort: false
---------------- MapReduce node scope-83
Map Plan
uniq_frequency1: Local Rearrange[tuple]{chararray}(false) - scope-45
| |
| Project[chararray][0] - scope-46
|
|---Load(file:/tmp/temp1620254926/tmp2077335416:org.apache.pig.impl.io.InterStorage) - scope-82--------
Reduce Plan
Store(file:/tmp/temp1620254926/tmp-26634357:org.apache.pig.impl.io.InterStorage) - scope-84
|
|---uniq_frequency3: New For Each(false,false,false,false,false)[bag] - scope-67
| |
| Project[chararray][1] - scope-57
| |
| Project[chararray][0] - scope-59
| |
| Project[double][2] - scope-61
| |
| Project[long][3] - scope-63
| |
| Project[double][4] - scope-65
|
|---filtered_uniq_frequency: Filter[bag] - scope-53
| |
| Greater Than[boolean] - scope-56
| |
| |---Project[double][2] - scope-54
| |
| |---Constant(2.0) - scope-55
|
|---uniq_frequency2: New For Each(true,true)[bag] - scope-52
| |
| Project[chararray][0] - scope-47
| |
| POUserFunc(org.apache.pig.tutorial.ScoreGenerator)[bag] - scope-50
| |
| |---Project[bag][1] - scope-49
|
|---uniq_frequency1: Package[tuple]{chararray} - scope-44--------
Global sort: false
---------------- MapReduce node scope-86
Map Plan
ordered_uniq_frequency: Local Rearrange[tuple]{chararray}(false) - scope-91
| |
| Constant(all) - scope-90
|
|---New For Each(false,false)[tuple] - scope-89
| |
| Project[chararray][0] - scope-87
| |
| Project[double][2] - scope-88
|
|---Load(file:/tmp/temp1620254926/tmp-26634357:org.apache.pig.impl.builtin.RandomSampleLoader('org.apache.pig.impl.io.InterStorage','100')) - scope-85--------
Reduce Plan
Store(file:/tmp/temp1620254926/tmp-586682361:org.apache.pig.impl.io.InterStorage) - scope-101
|
|---New For Each(false)[tuple] - scope-100
| |
| POUserFunc(org.apache.pig.impl.builtin.FindQuantiles)[tuple] - scope-99
| |
| |---Project[tuple][*] - scope-98
|
|---New For Each(false,false)[tuple] - scope-97
| |
| Constant(-1) - scope-96
| |
| ordered_uniq_frequency: POSort[bag]() - scope-70
| | |
| | Project[chararray][0] - scope-94
| | |
| | Project[double][1] - scope-95
| |
| |---Project[bag][1] - scope-93
|
|---Package[tuple]{chararray} - scope-92--------
Global sort: false
---------------- MapReduce node scope-103
Map Plan
ordered_uniq_frequency: Local Rearrange[tuple]{tuple}(false) - scope-104
| |
| Project[chararray][0] - scope-68
| |
| Project[double][2] - scope-69
|
|---Load(file:/tmp/temp1620254926/tmp-26634357:org.apache.pig.impl.io.InterStorage) - scope-102--------
Reduce Plan
ordered_uniq_frequency: Store(file:/tmp/temp1620254926/tmp-225116343:org.apache.pig.impl.io.InterStorage) - scope-71
|
|---New For Each(true)[tuple] - scope-107
| |
| Project[bag][1] - scope-106
|
|---PackageLite[tuple]{tuple} - scope-105--------
Global sort: true
Quantile file: file:/tmp/temp1620254926/tmp-586682361
----------------
全文完 :)
Pig源代码分析: 简析运行计划的生成的更多相关文章
- OpenStack Cinder源代码流程简析
版权声明:本博客欢迎转载,转载时请以超链接形式标明文章原始出处!谢谢! 博客地址:http://blog.csdn.net/i_chips 一.概况 OpenStack的各个模块都有对应的client ...
- Spark Core源代码分析: Spark任务运行模型
DAGScheduler 面向stage的调度层,为job生成以stage组成的DAG,提交TaskSet给TaskScheduler运行. 每个Stage内,都是独立的tasks,他们共同运行同一个 ...
- 在C#调用C++的DLL简析(一)——生成非托管dll
经过一晚上的折腾,还是下点决心将些许的心得写下来,以免以后重复劳动. C#与C/C++相 比,前者的优势在于UI,后者的优势在于算法,C++下的指针虽然恶心,若使用得当还是相当方便的,最重要的问题是, ...
- Java设计模式-代理模式之动态代理(附源代码分析)
Java设计模式-代理模式之动态代理(附源代码分析) 动态代理概念及类图 上一篇中介绍了静态代理,动态代理跟静态代理一个最大的差别就是:动态代理是在执行时刻动态的创建出代理类及其对象. 上篇中的静态代 ...
- Thrift源代码分析(八)--总结加一个完整的可执行的Thrift样例
前面七篇文章分析了Thrfit的方方面面,看到这里时应该对Thrift有了深入的理解. Thrift源代码分析(一)-- 基本概念 Thrift源代码分析(二)-- 协议和编解码 Thrift源代码分 ...
- Android应用程序框架层和系统运行库层日志系统源代码分析
文章转载至CSDN社区罗升阳的安卓之旅,原文地址:http://blog.csdn.net/luoshengyang/article/details/6598703 在开发Android应用程序时,少 ...
- XBMC源代码简析 5:视频播放器(dvdplayer)-解复用器(以ffmpeg为例)
XBMC分析系列文章: XBMC源代码分析 1:整体结构以及编译方法 XBMC源代码分析 2:Addons(皮肤Skin) XBMC源代码分析 3:核心部分(core)-综述 XBMC源代码分析 4: ...
- Java Annotation 及几个常用开源项目注解原理简析
PDF 版: Java Annotation.pdf, PPT 版:Java Annotation.pptx, Keynote 版:Java Annotation.key 一.Annotation 示 ...
- Android研发中对String的思考(源代码分析)
1.经常使用创建方式思考: String text = "this is a test text "; 上面这一句话实际上是运行了三件事 1.声明变量 String text; ...
随机推荐
- 【Henu ACM Round#19 E】 Om Nom and Candies
[链接] 我是链接,点我呀:) [题意] 在这里输入题意 [题解] 紫书上的原题: 链接 [代码] #include <bits/stdc++.h> #define ll long lon ...
- ArcGIS 空间查询
public static bool QueryMessPoint(IActiveView activeView, IFeatureClass featureClass, string whereCl ...
- java教程(五)SSH框架-配置
前言:从这篇博客開始我将继续讲述Java教程:SSH篇.主要内容环绕SSH框架分析与搭建,今天先简介一下SSH的配置. SSH配置顺序是: spring-->hibernate-->str ...
- iBatis框架使用 4步曲
iBatis是一款使用方便的数据訪问工具,也可作为数据持久层的框架.和ORM框架(如Hibernate)将数据库表直接映射为Java对象相比.iBatis是将SQL语句映射为Java对象. 相对于全自 ...
- 在IIS中给某一个网站添加binding的坑
以http为例, 假如ip地址从局域网的地址172.31.212.20改为127.0.0.1 但是网站没法访问了http://172.31.212.20/chile.backoffice/ 必须通过 ...
- @Not - Empty-Null-Blank
1 @NotEmpty :不能为null,且Size>0 2 @NotNull:不能为null,但可以为empty,没有Size的约束 3 @NotBlank:只用于String,不能为nu ...
- Linux常用的安全工具
Linux常用的安全工具 "工欲善其事,必先利其器".作为一个合格的系统管理员,要应对可能发生的安全事件,掌握Linux下各种必须的安全工具是首要大事.本文主要介绍Linux上常用 ...
- main函数argc,argv操作
使用main(int argc, char *argv[])==main(int argc, char **argv)的基本操作是linux编程的最基本的一步,在windows下也是exe脱离IDE运 ...
- 学习《概率机器人》中英文PDF+Probabilistic Robotics
研究机器人时,使机器人能够应对环境.传感器.执行机构.内部模型.近似算法等所带来的不确定性是必须面对的问题. <概率机器人>对概率机器人学这一新兴领域进行了全面的介绍.概率机器人学依赖统计 ...
- Windows IP 设置脚本
前言: 有时候,总要在不同地方工作,就会总要切换 IP,内网比较严重,内网大多数都是静态 IP 所以呢,老是手动去设置 IP.子网掩码.网关等甚是繁琐,同时还得记住 IP,所以呢,用脚本来记录 IP, ...