第二类Stirling数实际上是集合的一个拆分,表示将n个不同的元素拆分成m个集合的方案数,记为 或者 。

第二类Stirling数的推导和第一类Stirling数类似,可以从定义出发考虑第n+1个元素的情况,假设要把n+1个元素分成m个集合则分析如下:
(1)如果n个元素构成了m-1个集合,那么第n+1个元素单独构成一个集合。方案数 。
(2)如果n个元素已经构成了m个集合,将第n+1个元素插入到任意一个集合。方案数 m*S(n,m) 。
 
综合两种情况得:

 
 
递推式:dp[i][j] = dp[i-1][j-1]+j*dp[i-1][j];
 
 
 
模板代码:
      dp[][] = ;
for(int i = ;i <= n; i++){
for(int j = ;j <= i; j++){
dp[i][j] = dp[i-][j-]+j*dp[i-][j];
}
}
n=0 1
n=1 0 1
n=2 0 1 1
n=3
0 1 3 1
n=4
0 1 7 6 1
n=5
0 1 15 25 10 1
n=6
0 1 31 90 65 15 1
n=7
0 1 63 301 350 140 21 1
n=8
0 1 127 966 1701 1050 266 28 1
n=9
0 1 255 3025 7770 6951 2646 462 36 1
 

【算法】第二类斯特林数Stirling的更多相关文章

  1. 特殊计数序列——第二类斯特林(stirling)数

    计算式 \[ S(n,m)=S(n-1,m-1)+mS(n,m) \] \(S(0,0)=1,S(i,0)=0(i>0)\) 组合意义 将\(n\)个不可分辨的小球放入\(m\)个不可分辨的盒子 ...

  2. HDU2643(SummerTrainingDay05-P 第二类斯特林数)

    Rank Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submis ...

  3. 8-机器分配(hud4045-组合+第二类斯特林数)

    http://acm.hdu.edu.cn/showproblem.php?pid=4045 Machine schedulingTime Limit: 5000/2000 MS (Java/Othe ...

  4. swjtu oj Paint Box 第二类斯特林数

    http://swjtuoj.cn/problem/2382/ 题目的难点在于,用k种颜色,去染n个盒子,并且一定要用完这k种颜色,并且相邻的格子不能有相同的颜色, 打了个表发现,这个数是s(n, k ...

  5. HDU2512 一卡通大冒险 —— 第二类斯特林数

    题目链接:https://vjudge.net/problem/HDU-2512 一卡通大冒险 Time Limit: 2000/1000 MS (Java/Others)    Memory Lim ...

  6. 新疆大学(新大)OJ xju 1006: 比赛排名 第二类斯特林数+阶乘

    题目链接:http://acm.xju.edu.cn/JudgeOnline/problem.php?id=1006 第二类斯特林数: 第二类Stirling数实际上是集合的一个拆分,表示将n个不同的 ...

  7. 【BZOJ5093】图的价值(第二类斯特林数,组合数学,NTT)

    [BZOJ5093]图的价值(第二类斯特林数,组合数学,NTT) 题面 BZOJ 题解 单独考虑每一个点的贡献: 因为不知道它连了几条边,所以枚举一下 \[\sum_{i=0}^{n-1}C_{n-1 ...

  8. 【BZOJ4555】求和(第二类斯特林数,组合数学,NTT)

    [BZOJ4555]求和(第二类斯特林数,组合数学,NTT) 题面 BZOJ 题解 推推柿子 \[\sum_{i=0}^n\sum_{j=0}^iS(i,j)·j!·2^j\] \[=\sum_{i= ...

  9. CF932E Team Work(第二类斯特林数)

    传送门:CF原网 洛谷 题意:给定 $n,k$,求 $\sum\limits^n_{i=1}\dbinom{n}{i}i^k\bmod(10^9+7)$. $1\le n\le 10^9,1\le k ...

随机推荐

  1. Hessian Spirng实例

    Spring实例 之前,我们做了很简单的纯Hessian的调用,虽然到此已经能够满足远程调用的需求了,但是我听说spring也能够访问hessian的远程服务,研究了一番,废话不多说,直接上示例. 业 ...

  2. HD-ACM算法专攻系列(16)——考试排名

    问题描述: 源码: 主要要注意输出格式. #include"iostream" #include"iomanip" #include"algorith ...

  3. 1到32 数字正则 还有IP的

    正则是按位解析匹配的,所以[1-32]是不行的. 解析: 1.1-32,包含1位数(1-9)和2位数(10-32) 2.10-32必须切割,10-19和20-29形式一样,得到[12][0-9],30 ...

  4. java ScriptEngine 使用 (java运行脚本文件)

    转自:http://www.tuicool.com/articles/imEbQbA Java SE 6最引人注目的新功能之一就是内嵌了脚本支持.在默认情况下,Java SE 6只支持JavaScri ...

  5. Hibernate配置文件 hibernate.cfg.xml

    <!--标准的XML文件的起始行,version='1.0'表明XML的版本,encoding='gb2312'表明XML文件的编码方式--> <?xml version='1.0' ...

  6. HTMLWEST网页特效大全

    网页特效大全网:www.htmlwest.com 收藏一下,很不错的站.

  7. 搭建hadoop、hdfs环境--ubuntu(完全分布式)

    最近在学习hadoop相关知识,就在本机上安装了hadoop,遇到了一些坑,也学到了不少.仅此记录我的安装过程,及可能遇到的问题.供参考.交流沟通见页末. 软件准备 >  虚拟机(VMware) ...

  8. anaconda3安装pytorch【window10】

    1.离线下载: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/win-64/ 在清华镜像软件站下载相应的版本,由于我之前安装了 ...

  9. BZOJ 1176/2683 Mokia (三维偏序CDQ+树状数组)

    题目大意: 洛谷传送门 三维偏序裸题.. 每次操作都看成一个三元组$<x,y,t>$,表示$x,y$坐标和操作时间$t $ 询问操作拆成$4$个容斥 接下来就是$CDQ$了,外层按t排序, ...

  10. Vue-router入门

    1.npm install vue-router --save-dev 安装路由包,在安装脚手架时实际上可以直接安装 2.解读核心文件 router/index.js文件 import Vue fro ...