【链接】 我是链接,点我呀:)

【题意】

在这里输入题意

【题解】

设fi表示深度为i的树个数,si是fi的前缀和,即si为深度不超过i树的个数。
那么si=s[i-1]^n + 1

就是说 先选一个节点作为根节点 然后选n个深度不超过i-1的树接在根节点下面。

这n个子树每个子树都有s[i-1]种取法。

所以是它的n次方。

注意:si这里混杂了深度为i和小于i的树。但没有深度为0的了,所以把这个深度为0的一个节点加上去就好.也即递推式中的加1

最后答案就是s[d]-s[d-1]了

用java的biginteger写

(加一个快速幂

【代码】

import java.math.BigInteger;
import java.util.*;
public class Main { private static BigInteger ksm(BigInteger x,int y) {
BigInteger temp = new BigInteger("1");
while (y>0) {
if ((y&1)==1) temp = temp.multiply(x);
x = x.multiply(x);
y>>=1;
}
return temp;
} public static void main(String[] args) {
Scanner cin = new Scanner(System.in);
int n,d;
n = cin.nextInt();d = cin.nextInt();
BigInteger a = new BigInteger("1");
for (int i = 1;i <= d;i++) {
BigInteger b = ksm(a,n);
b = b.add(new BigInteger("1"));
if (i==d)
a = b.subtract(a);
else
a = b;
}
System.out.println(a);
}
}

【BZOJ 1089】[SCOI2003]严格n元树的更多相关文章

  1. BZOJ 1089: [SCOI2003]严格n元树

    1089: [SCOI2003]严格n元树 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 1591  Solved: 795[Submit][Statu ...

  2. bzoj 1089 [SCOI2003]严格n元树(DP+高精度)

    1089: [SCOI2003]严格n元树 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 1250  Solved: 621[Submit][Statu ...

  3. BZOJ 1089 SCOI2003 严格n元树 动态规划+高精度

    题目大意:定义一棵深度为d的严格n元树为根的深度为0,最深的节点深度为d,且每一个非叶节点都有恰好n个子节点的树 给定n和d,求深度为d的严格n元树一共同拥有多少种 此题的递推部分并不难 首先我们设深 ...

  4. bzoj 1089 SCOI2003严格n元树 递推

    挺好想的,就是一直没调过,我也不知道哪儿的错,对拍也拍了,因为数据范围小,都快手动对拍了也不知道 哪儿错了.... 我们定义w[i]代表深度<=i的严格n元树的个数 那么最后w[d]-w[d-1 ...

  5. bzoj 1089: [SCOI2003]严格n元树【dp+高精】

    设f[i]为深度为i的n元树数目,s为f的前缀和 s[i]=s[i-1]^n+1,就是增加一个根,然后在下面挂n个子树,每个子树都有s[i-1]种 写个高精就行了,好久没写WA了好几次-- #incl ...

  6. 【BZOJ】1089: [SCOI2003]严格n元树(递推+高精度/fft)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1089 题意:求深度为d的n元树数目.(0<n<=32, 0<=d<=16) ...

  7. 【noi 2.6_9280】&【bzoj 1089】严格n元树(DP+高精度+重载运算符)

    题意:定义一棵树的所有非叶节点都恰好有n个儿子为严格n元树.问深度为d的严格n元树数目. 解法:f[i]表示深度为<=i的严格n元树数目.f[i]-f[i-1]表示深度为i的严格n元树数目.f[ ...

  8. 1089: [SCOI2003]严格n元树

    好久没更新了..于是节操掉尽python水过本来就水的题.. n,d=map(int, raw_input().split()) if d==0: print 1 else: f=[1] for i ...

  9. BZOJ1089: [SCOI2003]严格n元树

    1089: [SCOI2003]严格n元树 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 762  Solved: 387[Submit][Status ...

  10. bzoj1089 [SCOI2003]严格n元树(dp+高精)

    1089: [SCOI2003]严格n元树 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 1899  Solved: 954[Submit][Statu ...

随机推荐

  1. bindActionCreators作用

    个人总结: 讲一下bindActionCreators这个API, bindActionCreators是要结合mapDispatchToProps来使用的. mapDispatchToProps函数 ...

  2. js-数组和字符串转化

    一.数组=>字符串 需要将数组元素用某个字符连接成字符串,示例代码如下: var arr, str;arr = new Array(0,1,2,3,4);str = arr.join(" ...

  3. HDU 1757 A Simple Math Problem( 矩阵快速幂 )

    <font color = red , size = '4'>下列图表转载自 efreet 链接:传送门 题意:给出递推关系,求 f(k) % m 的值, 思路: 因为 k<2 * ...

  4. HDU 6125 Free from square (状压DP+分组背包)

    题目大意:让你在1~n中选择不多于k个数(n,k<=500),保证它们的乘积不能被平方数整除.求选择的方案数 因为质数的平方在500以内的只有8个,所以我们考虑状压 先找出在n以内所有平方数小于 ...

  5. DCL授权命令

    create user 用户名//创建用户    grant DBA to 用户名//授权    revoke //撤销权限

  6. linux内核(五)虚拟文件系统

    虚拟文件系统(VFS)是linux内核和具体I/O设备之间的封装的一层共通访问接口,通过这层接口,linux内核可以以同一的方式访问各种I/O设备. 虚拟文件系统本身是linux内核的一部分,是纯软件 ...

  7. COJS 1752. [BOI2007]摩基亚Mokia

    1752. [BOI2007]摩基亚Mokia ★★★   输入文件:mokia.in   输出文件:mokia.out   简单对比时间限制:5 s   内存限制:128 MB [题目描述] 摩尔瓦 ...

  8. jquery-layer.closeAll不执行的错觉

    在使用ajax.form提交的时候,弹出了layer插件的页面,于是我想使用layer插件提供的layer.closeAll()方法讲这个弹出的页面关闭,但是尝试了很久不行,到底是为什么呢? 过了一段 ...

  9. 快学Scala习题解答—第三章 数组相关操作

    3 数组相关操作  3.1 编写一段代码.将a设置为一个n个随机整数的数组,要求随机数介于0(包括)和n(不包括)之间  random和yield的使用 import scala.math.rando ...

  10. Android开发之视图动画基础

    Android的animation由四种类型组成 XML中  alpha 渐变透明度动画效果 scale 渐变尺寸伸缩动画效果 translate 画面转换位置移动动画效果 rotate 画面转移旋转 ...