【链接】 我是链接,点我呀:)

【题意】

在这里输入题意

【题解】

设fi表示深度为i的树个数,si是fi的前缀和,即si为深度不超过i树的个数。
那么si=s[i-1]^n + 1

就是说 先选一个节点作为根节点 然后选n个深度不超过i-1的树接在根节点下面。

这n个子树每个子树都有s[i-1]种取法。

所以是它的n次方。

注意:si这里混杂了深度为i和小于i的树。但没有深度为0的了,所以把这个深度为0的一个节点加上去就好.也即递推式中的加1

最后答案就是s[d]-s[d-1]了

用java的biginteger写

(加一个快速幂

【代码】

import java.math.BigInteger;
import java.util.*;
public class Main { private static BigInteger ksm(BigInteger x,int y) {
BigInteger temp = new BigInteger("1");
while (y>0) {
if ((y&1)==1) temp = temp.multiply(x);
x = x.multiply(x);
y>>=1;
}
return temp;
} public static void main(String[] args) {
Scanner cin = new Scanner(System.in);
int n,d;
n = cin.nextInt();d = cin.nextInt();
BigInteger a = new BigInteger("1");
for (int i = 1;i <= d;i++) {
BigInteger b = ksm(a,n);
b = b.add(new BigInteger("1"));
if (i==d)
a = b.subtract(a);
else
a = b;
}
System.out.println(a);
}
}

【BZOJ 1089】[SCOI2003]严格n元树的更多相关文章

  1. BZOJ 1089: [SCOI2003]严格n元树

    1089: [SCOI2003]严格n元树 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 1591  Solved: 795[Submit][Statu ...

  2. bzoj 1089 [SCOI2003]严格n元树(DP+高精度)

    1089: [SCOI2003]严格n元树 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 1250  Solved: 621[Submit][Statu ...

  3. BZOJ 1089 SCOI2003 严格n元树 动态规划+高精度

    题目大意:定义一棵深度为d的严格n元树为根的深度为0,最深的节点深度为d,且每一个非叶节点都有恰好n个子节点的树 给定n和d,求深度为d的严格n元树一共同拥有多少种 此题的递推部分并不难 首先我们设深 ...

  4. bzoj 1089 SCOI2003严格n元树 递推

    挺好想的,就是一直没调过,我也不知道哪儿的错,对拍也拍了,因为数据范围小,都快手动对拍了也不知道 哪儿错了.... 我们定义w[i]代表深度<=i的严格n元树的个数 那么最后w[d]-w[d-1 ...

  5. bzoj 1089: [SCOI2003]严格n元树【dp+高精】

    设f[i]为深度为i的n元树数目,s为f的前缀和 s[i]=s[i-1]^n+1,就是增加一个根,然后在下面挂n个子树,每个子树都有s[i-1]种 写个高精就行了,好久没写WA了好几次-- #incl ...

  6. 【BZOJ】1089: [SCOI2003]严格n元树(递推+高精度/fft)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1089 题意:求深度为d的n元树数目.(0<n<=32, 0<=d<=16) ...

  7. 【noi 2.6_9280】&【bzoj 1089】严格n元树(DP+高精度+重载运算符)

    题意:定义一棵树的所有非叶节点都恰好有n个儿子为严格n元树.问深度为d的严格n元树数目. 解法:f[i]表示深度为<=i的严格n元树数目.f[i]-f[i-1]表示深度为i的严格n元树数目.f[ ...

  8. 1089: [SCOI2003]严格n元树

    好久没更新了..于是节操掉尽python水过本来就水的题.. n,d=map(int, raw_input().split()) if d==0: print 1 else: f=[1] for i ...

  9. BZOJ1089: [SCOI2003]严格n元树

    1089: [SCOI2003]严格n元树 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 762  Solved: 387[Submit][Status ...

  10. bzoj1089 [SCOI2003]严格n元树(dp+高精)

    1089: [SCOI2003]严格n元树 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 1899  Solved: 954[Submit][Statu ...

随机推荐

  1. 详解 QT 主要类 QWidget

    QWidget类是所有用户界面对象的基类,每一个窗口部件都是矩形,并且它们按Z轴顺序排列的.一个窗口部件可以被它的父窗口部件或者它前面的窗口部件盖住一部分. 先来看内容. AD: 2013云计算架构师 ...

  2. sql where条件子句

    where中可用的运算符: where 的执行 是从右到左: where的SQL优化:(where条件特别多的情况下,效果明显) 对于and,应该尽量把假的放到右边. 对于or,应该尽量把真的放到右边 ...

  3. [luogu] P3294 [SCOI2016]背单词 (贪心)

    题目描述 Lweb 面对如山的英语单词,陷入了深深的沉思,"我怎么样才能快点学完,然后去玩三国杀呢?".这时候睿智的凤老师从远处飘来,他送给了 Lweb 一本计划册和一大缸泡椒,他 ...

  4. RabbitMQ消息可靠性分析 - 简书

    原文:RabbitMQ消息可靠性分析 - 简书 有很多人问过我这么一类问题:RabbitMQ如何确保消息可靠?很多时候,笔者的回答都是:说来话长的事情何来长话短说.的确,要确保消息可靠不只是单单几句就 ...

  5. POJ 2369

    我们知道,当循环长度为L时,置换群幂次为K ,则结果是GCD(L,K)个积相乘. 于是,我们只需要求出每个循环的长度,求得它们的最小公倍数即为解. #include <iostream> ...

  6. Crazyflie 2.0 System Architecture

    Crazyflie 2.0架构包含两个微控制器: A NRF51, Cortex-M0, 用于实现无线通信和电源管理: (1)按键开关逻辑(ON/OFF logic) (2)控制给其它系统供电(STM ...

  7. 【POJ 1850】 Code

    [POJ 1850] Code 还是非常想说 数位dp真的非常方便! !. 数位dp真的非常方便!.! 数位dp真的非常方便! !! 重要的事说三遍 该题转换规则跟进制差点儿相同 到z时进一位 如az ...

  8. ABAP FIELD-SYMBOLS 有大作用- 将没有可改參数的增强出口变得也能改主程序的值了

    看下图代码: report  z_xul_test2 中 定义了 全局变量 G_DATA1 , 分别调用了 z_xul_tes1 中的 form  和 function zbapi_test , 这两 ...

  9. Navgationcontroller 的pop

    1.NavgationController pop 回来不进入viewdisload,利用原来载入的视图 不是啊,他pop回来的时候不进viewdidload 直接进去viewwillApper这种方 ...

  10. LeetCode——Copy List with Random Pointer

    A linked list is given such that each node contains an additional random pointer which could point t ...