[Luogu]P3338 [ZJOI2014]力(FFT)
题目描述
给出\(n\)个数\(q_i\),给出\(F_j\)的定义如下:
\(F_j = \sum_{i<j}\frac{q_i q_j}{(i-j)^2 }-\sum_{i>j}\frac{q_i q_j}{(i-j)^2 }\)
令\(E_i=F_i/q_i\),求\(E_i\).
输入输出格式
输入格式:
第一行一个整数n。
接下来n行每行输入一个数,第i行表示qi。
输出格式:
n行,第i行输出Ei。
与标准答案误差不超过1e-2即可。
输入输出样例
输入样例#1: 复制
5
4006373.885184
15375036.435759
1717456.469144
8514941.004912
1410681.345880
输出样例#1: 复制
-16838672.693
3439.793
7509018.566
4595686.886
10903040.872
说明
对于30%的数据,n≤1000。
对于50%的数据,n≤60000。
对于100%的数据,n≤100000,0<qi<1000000000。
[spj 0.01]
题解
一道对于刚学FFT的人不错的题目。
完全可以自己手推。
搞了我晚自习半个小时才推出来...作业都没写完。
对于这个式子
\(F_j = \sum_{i<j}\frac{q_i q_j}{(i-j)^2 }-\sum_{i>j}\frac{q_i q_j}{(i-j)^2 }\)
因为Ei是Fi/qi
所以我们首先消掉qi
所以变成了这样
\(E_j = \sum_{i<j}\frac{q_i}{(i-j)^2 }-\sum_{i>j}\frac{q_i}{(i-j)^2 }\)
好,接下来我们发现暴力O(n^2)就可以求出来了。
怎么转换到FFT里面去?
先O(n)处理出(i-j)^2.
这个时候我们列出样例。
对于E1=
4006373.885184*(1-1)^2 +
15375036.435759*(1-2)^2 -
1717456.469144*(1-3)^2 -
8514941.004912*(1-4)^2 -
1410681.345880*(1-5)^2 -
然后加起来
对于E2=
4006373.885184*(2-1)^2 +
15375036.435759*(2-2)^2 +
1717456.469144*(2-3)^2 -
8514941.004912*(2-4)^2 -
1410681.345880*(2-5)^2 -
观察后面的(i-j)^2项。
是不是相当于
\(-0.0625,-0.111111x,-0.25x^2,-1x^3,0x^4,1x^5,0.25x^6,0.111111x^7,0.0625x^8\)
\(*\)
\(4006373.885184,15375036.435759x,1717456.469144x^2,8514941.004912x^3,1410681.345880x^4\)
转换为卷积就可以了。
Code
#include<cstdio>
#include<cmath>
#include<algorithm>
#include<iostream>
#include<cstring>
#include<complex>
#define debug cout<<"JEFF是我们的红太阳!!"<<endl;
#define ll long long
using namespace std;
typedef complex<double> cp;
const int N=1e6+5;
const double pi=acos(-1.0);
cp a[N],b[N];
ll l,n,cnt,limit=1,r[N];
int read(){
int x=0,w=1;char ch=getchar();
while(ch>'9'||ch<'0'){if(ch=='-')w=-1;ch=getchar();}
while(ch>='0'&&ch<='9')x=x*10+ch-'0',ch=getchar();
return x*w;
}
void FFT(cp *A,int type){
for(int i=0;i<limit;i++)if(i<r[i])swap(A[r[i]],A[i]);
for(int i=1;i<limit;i<<=1){
cp wn(cos(pi/i),sin(type*pi/i));
for(int j=0;j<limit;j+=(i<<1)){
cp w(1,0),x,y;
for(int k=0;k<i;k++){
x=A[k+j];y=A[k+j+i]*w;
A[k+j]=x+y;A[k+j+i]=x-y;
w=w*wn;
}
}
}
}
int main(){
n=read();
for(int i=0;i<n;i++){
double x;
scanf("%lf",&x);
b[i]=x;
}
for(int i=n-1;i>=1;i--){
a[cnt]=-(1.0/(1.0*i*i));cnt++;
}a[cnt]=0;cnt++;
for(int i=1;i<=n-1;i++){
a[cnt]=(1.0/(1.0*i*i));cnt++;
}cnt--;
while(cnt+n>=limit)limit<<=1,l++;
for(int i=1;i<limit;i++)r[i]=(r[i>>1]>>1)|((i&1)<<(l-1));
FFT(a,1);FFT(b,1);
for(int i=0;i<limit;i++)a[i]*=b[i];
FFT(a,-1);for(int i=0;i<limit;i++)a[i]/=limit;
for(int i=n-1;i<=2*n-2;i++)printf("%.3lf\n",(double)(a[i].real()));
return 0;
}
[Luogu]P3338 [ZJOI2014]力(FFT)的更多相关文章
- [Luogu P3338] [ZJOI2014]力 (数论 FFT 卷积)
题面 传送门: 洛咕 BZOJ Solution 写到脑壳疼,我好菜啊 我们来颓柿子吧 \(F_j=\sum_{i<j}\frac{q_i*q_j}{(i-j)^2}-\sum_{i>j} ...
- P3338 [ZJOI2014]力(FFT)
题目 P3338 [ZJOI2014]力 做法 普通卷积形式为:\(c_k=\sum\limits_{i=1}^ka_ib_{k-i}\) 其实一般我们都是用\(i=0\)开始的,但这题比较特殊,忽略 ...
- P3338 [ZJOI2014]力 /// FFT 公式转化翻转
题目大意: https://www.luogu.org/problemnew/show/P3338 题解 #include <bits/stdc++.h> #define N 300005 ...
- luogu P3338 [ZJOI2014]力
传送门 首先化简原式\[F_j=\sum_{i<j}\frac{q_iq_j}{(i-j)^2}-\sum_{i>j}\frac{q_iq_j}{(i-j)^2},E_j=F_j/q_j\ ...
- 洛谷 P3338 [ZJOI2014]力 解题报告
P3338 [ZJOI2014]力 题目描述 给出n个数qi,给出Fj的定义如下: \(F_j = \sum_{i<j}\frac{q_i q_j}{(i-j)^2 }-\sum_{i>j ...
- [洛谷P3338] [ZJOI2014]力
洛谷题目链接:P3338 [ZJOI2014]力 题目描述 给出n个数qi,给出Fj的定义如下: \[F_j = \sum_{i<j}\frac{q_i q_j}{(i-j)^2 }-\sum_ ...
- bzoj3527: [Zjoi2014]力 fft
bzoj3527: [Zjoi2014]力 fft 链接 bzoj 思路 但是我们求得是 \(\sum\limits _{i<j} \frac{q_i}{(i-j)^2}-\sum_{i> ...
- 【BZOJ】3527: [Zjoi2014]力 FFT
[参考]「ZJOI2014」力 - FFT by menci [算法]FFT处理卷积 [题解]将式子代入后,化为Ej=Aj-Bj. Aj=Σqi*[1/(i-j)^2],i=1~j-1. 令f(i)= ...
- 洛谷P3338 [ZJOI2014]力(FFT)
传送门 题目要求$$E_i=\frac{F_i}{q_i}=\sum_{j=1}^{i-1}\frac{q_j}{(i-j)^2}-\sum_{j=i+1}^n\frac{q_j}{(j-i)^2}$ ...
随机推荐
- Android 7.0 Gallery图库源码分析4 - SlotView手势监听及页面跳转
上篇文章讲了初始化View时会实例化一个SlotView并监听其事件,至于它是怎么实现的,用的是Android自带的GestureDetector. GestureDetector是Android自带 ...
- NodeJS加密算法(转)
nodejs中常用加密算法 1.Hash算法加密: 创建一个nodejs文件hash.js,输入内容如下: 1 var crypto = require('crypto'); //加载crypto ...
- Tarjan缩点【模板】
#include <algorithm> #include <cstdio> #include <map> using namespace std; ); map& ...
- jquery简直是太酷炫强大了
链接地址:http://www.yyyweb.com/350.html Web 开发中很实用的10个效果[源码下载] 小鱼 发布于 3年前 (2014-07-15) 分类:前端开发 阅读(303741 ...
- 怎样制作C#安装程序
近期须要制作一个C#安装.在网上找了一些资料发现都不是非常完整,最后自己综合了一些资料,而且通过亲自检測,最后成功完毕C#打包成安装程序(打包成最简单的一种安装程序.假设须要更高的功能请自己在开发). ...
- 史上最全: svn与git的对照(二):svn与git的相关概念
如图1是svnserver端数据的文件夹结构 以下是gitserver端的文件夹结构 纵观svn和git服务端的文件夹结构我们非常easy发现 1.有些目录还是蛮像的.甚至是一样的比方说svn中的co ...
- easyui编辑器(kindeditor-4.1.10)
//1 重写kindedit -建一个js文件 easyui_kindeditor.js (function ($, K) { if (!K) throw " ...
- hdu 2032 一维数组实现杨辉三角
杨辉三角 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total Submi ...
- 公布自己的pods到CocoaPods trunk 及问题记录
这两天准备把之前写的一些小玩意加入到pods库中去,參考了一些资料后进行操作,实际中也遇到了一些问题,记录下来.问题及解决方案在后面. 參考内容转载例如以下: 首先更新了用trunk之后,CocoaP ...
- oracle 11g sql优化之行迁移处理(加大BLOCK块)
行链接 产生原因:当一行数据大于一个数据块,ORACLE会同时分配两个数据块,并在第一个块上登记第二个块的地址,从而形成行链接. 预防方法:针对表空间扩大数据块大小.检查:analyze table ...