luogu3197 [HNOI2008] 越狱
题目大意
已知序列$P$满足$|P|=N$,(以下所有$i,i\in[1,N]$)$\forall i, P_i\in [1,M]$。求$|\{P|\exists i, P_i =P_{i+1}\}|$。
题解
容易想到运用正难则反的思想,先求出所有情况种数,再求出不符合情况种数。
但这里“所有”是什么?是全排列吗?又是什么的全排列呢?“不符合”又是什么呢?我们说不清楚。
那么怎么想?直接整体考虑太难,我们应当一位一位考虑。$\forall i,P_i$有$M$种取值。因此所有情况种数为$M^N$。关于不符合情况种数,第一位情况有$M$个,以后每一位为了不与前面相等,情况数为$M-1$。由乘法原理,不符合情况为$M(M-1)^{N-1}$。故答案为:$M^N-M(M-1)^{N-1}$。
注意
$(a-b)\mod p\neq a\mod p-b\mod p$,$(a-b)\mod p=(a\mod p-b\mod p+p)\mod p$。
#include <cstdio>
#include <cstring>
using namespace std; #define ll long long ll Mult(ll a, ll b, ll p)
{
ll ans = 0;
while (b)
{
if (1 & b)
ans = (ans + a) % p;
a = (a + a) % p;
b >>= 1;
}
return ans;
} ll Power(ll a, ll n, ll p)
{
ll ans = 1;
while (n)
{
if (n & 1)
ans = Mult(ans, a, p);
a = Mult(a, a, p);
n >>= 1;
}
return ans;
} int main()
{
const ll P = 100003;
ll n, m;
scanf("%lld%lld", &m, &n);
printf("%lld\n", (Power(m, n, P) - Mult(m, Power(m - 1, n - 1, P), P) + P) % P);
return 0;
}
luogu3197 [HNOI2008] 越狱的更多相关文章
- bzoj1008 [HNOI2008]越狱
1008: [HNOI2008]越狱 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 5099 Solved: 2207 Description 监狱有 ...
- 【bzoj1008】[HNOI2008]越狱
1008: [HNOI2008]越狱 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 7692 Solved: 3296[Submit][Status] ...
- BZOJ 1008: [HNOI2008]越狱 快速幂
1008: [HNOI2008]越狱 Description 监狱有连续编号为1...N的N个房间,每个房间关押一个犯人,有M种宗教,每个犯人可能信仰其中一种.如果相邻房间的犯人的宗教相同,就可能发生 ...
- BZOJ 1008 [HNOI2008]越狱
1008: [HNOI2008]越狱 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 5166 Solved: 2242[Submit][Status] ...
- BZOJ1008: [HNOI2008]越狱-快速幂+取模
1008: [HNOI2008]越狱 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 8689 Solved: 3748 Description 监狱有 ...
- BZOJ 1008 [HNOI2008]越狱 (简单排列组合 + 快速幂)
1008: [HNOI2008]越狱 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 10503 Solved: 4558[Submit][Status ...
- 洛谷 P3197 [HNOI2008]越狱 解题报告
P3197 [HNOI2008]越狱 题目描述 监狱有连续编号为\(1-N\)的\(N\)个房间,每个房间关押一个犯人,有\(M\)种宗教,每个犯人可能信仰其中一种.如果相邻房间的犯人的宗教相同,就可 ...
- [HNOI2008]越狱 题解(容斥原理+快速幂)
[HNOI2008]越狱 Description 监狱有连续编号为1...N的N个房间,每个房间关押一个犯人,有M种宗教,每个犯人可能信仰其中一种.如果相邻房间的犯人的宗教相同,就可能发生越狱,求有多 ...
- BZOJ 1008 [HNOI2008]越狱 排列组合
1008: [HNOI2008]越狱 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 4788 Solved: 2060[Submit][Status] ...
随机推荐
- wap 5.23 网测几道题目
1. n个犯人,m个省份, 如果相邻的2个犯人来自同一省份,则是不安全的,求不安全的个数. 正难则反,用全部的个数减去非法的个数,就是最后的答案. m^n - m * (m - 1) ^ (n - 1 ...
- Jenkins构建项目,JAVA_HOME is not defined correctly
好久都没有更新了,由于职位调整,开始捣鼓持续集成的东西了.jenkins的基本安装配置网上有很多教程,不用多讲了,就记录下我在使用过程中遇到的一些问题.话说这个jenkins环境以及安装好了有一段时间 ...
- PHP序列化 反序列化
序列化是将变量转换为可保存或传输的字符串的过程:反序列化就是在适当的时候把这个字符串再转化成原来的变量使用.这两个过程结合起来,可以轻松地存储和传输数据,使程序更具维护性. 1. serialize和 ...
- sql学习--update
两种修改形式 第一种:静态插入 ,notes='began career selling ...balabala' where jc='johnny ca' 第二种: --注意别名和on后边的表连接不 ...
- C# 如何实现WinForm程序自重启(重新启动自己)
重启的时间间隔方法 private void Restart() { Thread thtmp = new Thread(new ParameterizedThreadStart(run)); obj ...
- 大白话理解promise对象
Promise 代表了未来某个将要发生的事件(通常是一个异步操作) Promise 是异步编程的解决方案,能够简化多层回调嵌套,代表了未来某个将要发生的事件.Promise是一个构造函数,本身有a ...
- (转) 前端模块化:CommonJS,AMD,CMD,ES6
模块化的开发方式可以提高代码复用率,方便进行代码的管理.通常一个文件就是一个模块,有自己的作用域,只向外暴露特定的变量和函数.目前流行的js模块化规范有CommonJS.AMD.CMD以及ES6的模块 ...
- JavaScript特效之图片特效放大,缩小,旋转
效果图如下: 效果代码如下: <!doctype html> <html lang="en"> <head> <meta charset= ...
- 闲着无聊时写的一个调用天气 API 的小 Demo
分为两个部分--调用以及实现,并且由于不想折腾,直接使用了 Console 来调用. 通过firefox直接调用 Main 入口,调用以及输出 调用部分没什么好说的,主要是针对 dynamic 类型的 ...
- nginx + php 403 原因分析
环境:nginx + php 问题: 配置的网站,访问出现报错:Access Denied (403) 常见解决方法: 1.文件权限问题 可能是文件权限问题,没有读权限. 或者selinux没有关闭. ...