【题目链接】

https://www.lydsy.com/JudgeOnline/problem.php?id=1951

【算法】

欧拉定理+中国剩余定理 + lucas定理

【代码】

#include<bits/stdc++.h>
using namespace std;
#define MAXD 40000
typedef long long ll;
const ll P = ;
const ll m[] = {,,,}; ll i,j,n,q,cnt,ans,x;
ll a[],factor[];
ll fac[MAXD+][]; inline void exgcd(ll a,ll b,ll &x,ll &y)
{
if (b == )
{
x = ;
y = ;
} else
{
exgcd(b,a%b,y,x);
y -= a / b * x;
}
}
inline ll CRT()
{
int i;
ll res = ,M,T,x;
for (i = ; i < ; i++)
{
M = (P - ) / m[i];
exgcd(M,m[i],T,x);
T = (T % m[i] + m[i]) % m[i];
res = (res + (a[i] * M % (P - ) * T % (P - )) % (P - )) % (P - );
}
return res;
}
inline ll power(ll a,ll n,ll p)
{
ll b = a,res = ;
while (n)
{
if (n & ) res = res * b % p;
b = b * b % p;
n >>= ;
}
return res;
}
inline void init()
{
int i,j;
for (i = ; i < ; i++) fac[][i] = ;
for (i = ; i <= MAXD; i++)
{
for (j = ; j < ; j++)
{
fac[i][j] = fac[i-][j] * i % m[j];
}
}
}
inline ll C(ll x,ll y,ll p)
{
if (x < y) return ;
if (y == ) return ;
return fac[x][p] * power(fac[y][p]*fac[x-y][p]%m[p],m[p]-,m[p]) % m[p];
}
inline ll lucas(ll x,ll y,ll p)
{
if (y == ) return ;
else return lucas(x/m[p],y/m[p],p) * C(x%m[p],y%m[p],p) % m[p];
}
int main()
{ scanf("%lld%lld",&n,&q);
if (q == P)
{
printf("0\n");
return ;
}
cnt = ;
for (i = ; i <= sqrt(n); i++)
{
if (n % i == )
{
factor[++cnt] = i;
if (i * i != n) factor[++cnt] = n / i;
}
}
init();
for (i = ; i <= cnt; i++)
{
for (j = ; j < ; j++)
{
a[j] = lucas(n,factor[i],j);
}
x = (x + CRT()) % (P - );
}
ans = power(q,x,P);
printf("%lld\n",ans); return ; }

【SDOI 2010】 古代猪文的更多相关文章

  1. 【数学/扩展欧几里得/Lucas定理】BZOJ 1951 :[Sdoi 2010]古代猪文

    Description “在那山的那边海的那边有一群小肥猪.他们活泼又聪明,他们调皮又灵敏.他们自由自在生活在那绿色的大草坪,他们善良勇敢相互都关心……” ——选自猪王国民歌 很久很久以前,在山的那边 ...

  2. [ SDOI 2010 ] 古代猪文

    \(\\\) Description 一句话题意: 设 \(x=\sum_{d|n} C_n^d\),求 \(G^x\pmod {999911659}\) . 从原题面大段语文中其实不难推出所求. \ ...

  3. BZOJ-1951 古代猪文 (组合数取模Lucas+中国剩余定理+拓展欧几里得+快速幂)

    数论神题了吧算是 1951: [Sdoi2010]古代猪文 Time Limit: 1 Sec Memory Limit: 64 MB Submit: 1573 Solved: 650 [Submit ...

  4. BZOJ 1951: [Sdoi2010]古代猪文( 数论 )

    显然答案是G^∑C(d,N)(d|N).O(N^0.5)枚举N的约数.取模的数999911659是质数, 考虑欧拉定理a^phi(p)=1(mod p)(a与p互质), 那么a^t mod p = a ...

  5. 1951: [Sdoi2010]古代猪文

    1951: [Sdoi2010]古代猪文 Time Limit: 1 Sec  Memory Limit: 64 MBSubmit: 2171  Solved: 904[Submit][Status] ...

  6. BZOJ 1951: [Sdoi2010]古代猪文 [Lucas定理 中国剩余定理]

    1951: [Sdoi2010]古代猪文 Time Limit: 1 Sec  Memory Limit: 64 MBSubmit: 2194  Solved: 919[Submit][Status] ...

  7. 古代猪文:数论大集合:欧拉定理,exgcd,china,逆元,Lucas定理应用

    /* 古代猪文:Lucas定理+中国剩余定理 999911658=2*3*4679*35617 Lucas定理:(m,n)=(sp,tp)(r,q) %p 中国剩余定理:x=sum{si*Mi*ti} ...

  8. [SDOI2010]古代猪文 (欧拉,卢卡斯,中国剩余)

    [SDOI2010]古代猪文 \(solution:\) 这道题感觉综合性极强,用到了许多数论中的知识: 质因子,约数,组合数 欧拉定理 卢卡斯定理 中国剩余定理 首先我们读题,发现题目需要我们枚举k ...

  9. 洛咕 P2480 [SDOI2010]古代猪文

    洛咕 P2480 [SDOI2010]古代猪文 题目是要求\(G^{\sum_{d|n}C^d_n}\). 用费马小定理\(G^{\sum_{d|n}C^d_n\text{mod 999911658} ...

  10. BZOJ 1951 【SDOI2010】 古代猪文

    题目链接:古代猪文 好久没写博客了,这次就先写一篇吧…… 题面好鬼……概括起来就是:给出\(N,G(\leqslant 10^9)\),求:\[G^{\sum_{d|n}\binom{n}{d}} \ ...

随机推荐

  1. dotnetnuk错误提醒机制

    DotNetNuke.UI.Skins.Skin.AddModuleMessage(this, "关注保存出错.", DotNetNuke.UI.Skins.Controls.Mo ...

  2. **ML : ML中的最优化方法

    前言:         在机器学习方法中,若模型理解为决策模型,有些模型可以使用解析方法.不过更一般的对模型的求解使用优化的方法,更多的数据可以得到更多的精度.         AI中基于归纳的方法延 ...

  3. 【sqli-labs】 less18 POST - Header Injection - Uagent field - Error based (基于错误的用户代理,头部POST注入)

    这次username和password都进行了输入校验 但是ip和uagent没有校验 当我们用admin admin登陆成功后,就会一条插入语句 由于程序无条件的信任了浏览器的header信息,那么 ...

  4. (转)C#开发微信门户及应用(3)--文本消息和图文消息的应答

    http://www.cnblogs.com/wuhuacong/p/3622636.html 微信应用如火如荼,很多公司都希望搭上信息快车,这个是一个商机,也是一个技术的方向,因此,有空研究下.学习 ...

  5. AFNetworking源码解析-https证书相关

    本篇说说安全相关的AFSecurityPolicy模块,AFSecurityPolicy用于验证HTTPS请求的证书,先来看看HTTPS的原理和证书相关的几个问题. HTTPS HTTPS连接建立过程 ...

  6. iconfont

    查看一些网站代码的过程中,会发现许多的图片是不是背景图片或者<img>,而是类似于下面这样: .iconfont{ font-family:"iconfont" !im ...

  7. BZOJ 1740: [Usaco2005 mar]Yogurt factory 奶酪工厂 贪心 + 问题转化

    Description The cows have purchased a yogurt factory that makes world-famous Yucky Yogurt. Over the ...

  8. vue-属性传值 props

    props属性传值 1.传具体的值  string(字符串) number(数值) boolean(布尔) 2.传一个引用 array(数组)  object(对象) ----传引用----- 代码 ...

  9. 小程序组件 Vant Weapp 安装

    文件夹的名称必须是英文 第一步:npm init -y 第二步:npm i vant-weapp -S --production

  10. 【剑指Offer】46、圆圈中最后剩下的数

      题目描述:   每年六一儿童节,牛客都会准备一些小礼物去看望孤儿院的小朋友,今年亦是如此.HF作为牛客的资深元老,自然也准备了一些小游戏.其中,有个游戏是这样的:首先,让小朋友们围成一个大圈.然后 ...