NOIP2009 T2 Hankson的趣味题
传送门
题目描述
Hanks 博士是 BT (Bio-Tech,生物技术) 领域的知名专家,他的儿子名叫 Hankson。现在,刚刚放学回家的 Hankson 正在思考一个有趣的问题。
今天在课堂上,老师讲解了如何求两个正整数 c1 和 c2 的最大公约数和最小公倍数。现在 Hankson 认为自己已经熟练地掌握了这些知识,他开始思考一个“求公约数”和“求公倍数”之类问题的“逆问题”,这个问题是这样的:已知正整数 a0,a1,b0,b1,设某未知正整数 x 满足:
1. x 和 a0 的最大公约数是 a1;
2. x 和 b0 的最小公倍数是 b1。
Hankson 的“逆问题”就是求出满足条件的正整数 x。但稍加思索之后,他发现这样的x 并不唯一,甚至可能不存在。因此他转而开始考虑如何求解满足条件的 x 的个数。请你帮助他编程求解这个问题。
输入输出格式
输入格式:
第一行为一个正整数 n,表示有 n 组输入数据。接下来的 n 行每行一组输入数据,为四个正整数 a0,a1,b0,b1,每两个整数之间用一个空格隔开。输入数据保证 a0 能被 a1 整除,b1 能被 b0 整除。
输出格式:
输出文件 son.out 共 n 行。每组输入数据的输出结果占一行,为一个整数。
对于每组数据:若不存在这样的 x,请输出 0;
若存在这样的 x,请输出满足条件的 x 的个数;
输入输出样例
说明
【说明】
第一组输入数据,x 可以是 9、18、36、72、144、288,共有 6 个。
第二组输入数据,x 可以是 48、1776,共有 2 个。
【数据范围】
对于 50%的数据,保证有 1≤a0,a1,b0,b1≤10000 且 n≤100。
对于 100%的数据,保证有 1≤a0,a1,b0,b1≤2,000,000,000 且 n≤2000。
很明显的,读题可得下面两个方程:
gcd(x,a0) = a1; ------------------------------#5
lcm(x,b0) = b1;
对于50%的数据来说,直接从a1枚举到b1然后判断就行。
对于100%数据,显然这样暴力枚举是会超时的。
由上面第二个方程可得:
x0*b0/gcd(x0,b0) = b1;
移项得:
gcd(x0,b0) = x0*b0/b1; --------------------------#6
因为(x0*b0/b1)是x0,b0的最大公约数, 两边同时除以x0*bo/b1得:
gcd(b1/b0,b1/x) = 1; -----------------------------#1
同理,对于第一个方程,两边除以一个a1得:
gcd(x/a1,a0/a1) = 1; ------------------------------#2
由#1 ,#2两方程可以看出,x是b1的因子,a1是x的因子。
所以我们只要枚举b1的因子(1-> sqrt(b1)),然后判定其是否满足#5与#6。
下面贴代码,有问题留言。
#include <cstdio>
#include <cmath>
#include <algorithm>
using namespace std;
int n,a0,a1,b0,b1,ans;
int gcd(int a,int b){
return (b==?a:gcd(b,a%b));
}
int main(){
scanf("%d",&n);
while(n--){
ans = ;
scanf("%d%d%d%d",&a0,&a1,&b0,&b1);
int bq = sqrt(b1);
for(int i = ;i<=bq;i++){
if(b1%i == ){
if(gcd(i,a0) == a1 && gcd(i,b0)*b1 == i*b0) ++ans;
int j = b1 / i; //枚举另一个因子
if(j == i) continue;
if(gcd(j,a0) == a1 && gcd(j,b0)*b1 == j*b0) ++ans;
}
}
printf("%d\n",ans);
}
}
NOIP2009 T2 Hankson的趣味题的更多相关文章
- 「NOIP2009」Hankson 的趣味题
Hankson 的趣味题 [内存限制:$128 MiB$][时间限制:$1000 ms$] [标准输入输出][题目类型:传统][评测方式:文本比较] 题目描述 Hanks 博士是 BT(Bio-Tec ...
- 【NOIP2009】Hankson 的趣味题
题目描述 Hanks 博士是 BT (Bio-Tech,生物技术) 领域的知名专家,他的儿子名叫 Hankson.现在,刚刚放学回家的 Hankson 正在思考一个有趣的问题. 今天在课堂上,老师讲解 ...
- loj2589 「NOIP2009」Hankson 的趣味题
对于质因数分解理解还不到位. 此题可知$lcm$是$x$的倍数,$x$是$lcm$的约数,只要在$lcm$的分解质因数里对每一个质因子讨论种数即可. 具体来说,对于$lcm$的一个质因子$p$,讨论$ ...
- 【NOIP2009】Hankson的趣味题
题意:给出 \(a_0\), \(a_1\), \(b_0\), \(b_1\), 求出正整数 \(x\) 的个数,\(x\) 满足: \(gcd(x,a_0)=a_1\) , \(lcm(x, b_ ...
- 「NOIP2009」Hankson的趣味题
题目描述 (由于本题是数论题,所以我只把题目大意说一下...) 输入时给定\(a_0,a_1,b_0,b_1\),题目要求你求出满足如下条件的\(x\)的个数: \[\begin{cases}\gcd ...
- 洛谷P1072 [NOIP2009] Hankson 的趣味题
P1072 Hankson 的趣味题 题目描述 Hanks 博士是 BT (Bio-Tech,生物技术) 领域的知名专家,他的儿子名叫 Hankson.现在,刚刚放学回家的 Hankson 正在思考一 ...
- NOIP 2009 Hankson 的趣味题
洛谷 P1072 Hankson 的趣味题 洛谷传送门 JDOJ 1648: [NOIP2009]Hankson的趣味题 T2 JDOJ传送门 Description Hanks 博士是BT (Bio ...
- CH3201 Hankson的趣味题
题意 3201 Hankson的趣味题 0x30「数学知识」例题 描述 Hanks博士是BT(Bio-Tech,生物技术)领域的知名专家,他的儿子名叫Hankson.现在,刚刚放学回家的Hankson ...
- 算法训练 Hankson的趣味题
算法训练 Hankson的趣味题 时间限制:1.0s 内存限制:64.0MB 问题描述 Hanks 博士是BT (Bio-Tech,生物技术) 领域的知名专家,他的儿子名叫Han ...
随机推荐
- IntelliJ IDEA 在左右两侧出现Project、Maven Project等导航按钮
IntelliJ IDEA 在左右两侧出现Project.Maven Project等导航按钮 选中 View > Tool Buttons 可以查看Project.Maven Project等 ...
- Oracle 11g OEM登录后提示“出现内部错误”
使用oem登录时提示:“出现内部错误.有关详细信息, 请查看日志文件”. 具体原因未知,发现使用SQL Plus登录一次之后,再次登录即可.
- NSThread/NSOperation/GCD 三种多线程技术
1.iOS的三种多线程技术 1.NSThread 每个NSThread对象对应一个线程,量级较轻(真正的多线程) 2.以下两点是苹果专门开发的“并发”技术,使得程序员可以不再去关心线程的具体使用问题 ...
- javascript 使用方式
第一种:内嵌在html节点中 <html> <body> <input type="button" onclick="document.bo ...
- Android动态逆向分析工具ZjDroid--脱壳神器
项目地址:https://github.com/BaiduSecurityLabs/ZjDroid 前提条件: 1.Root手机一部 2.须要通过Xposed installer( http://dl ...
- iOS-自己定义键盘选择器
目标样式: 直接上代码: 遵守协议 <UIPickerViewDataSource,UIPickerViewDelegate> 实现方法 //创建 UITextField 设置setInp ...
- linux(centos)下安装git并上传代码些许步骤(亲自验证过的步骤)
曾经听说了好多次github,但直到近期才第一次学习使用github来托管自己在linux下的代码! 说实话.我自己在使用的时候从网上查了好多教程.但总认为难以掌握(步骤过于繁琐),自己操作的时候还 ...
- B3300 [USACO2011 Feb]Best Parenthesis 模拟
这是我今天遇到最奇怪的问题,希望有人帮我解释一下... 一开始我能得90分: #include<iostream> #include<cstdio> #include<c ...
- ACM_城市交通线(简单并查集)
城市交通线 Time Limit: 2000/1000ms (Java/Others) Problem Description: A国有n座城市,编号为1~n,这n个城市之间没有任何交通线路,所以不同 ...
- Spring 的优秀工具类盘点---转
第 1 部分: 文件资源操作和 Web 相关工具类 http://www.ibm.com/developerworks/cn/java/j-lo-spring-utils1/ 文件资源操作 文件资源的 ...