NYOJ 364 田忌赛马
田忌赛马
- 描写叙述
- Here is a famous story in Chinese history.
"That was about 2300 years ago. General Tian Ji was a high official in the country Qi. He likes to play horse racing with the king and others."
"Both of Tian and the king have three horses in different classes, namely, regular, plus, and super. The rule is to have three rounds in a match; each of the horses must be used in one round. The winner of a single round takes two hundred silver dollars from
the loser."
"Being the most powerful man in the country, the king has so nice horses that in each class his horse is better than Tian's. As a result, each time the king takes six hundred silver dollars from Tian."
"Tian Ji was not happy about that, until he met Sun Bin, one of the most famous generals in Chinese history. Using a little trick due to Sun, Tian Ji brought home two hundred silver dollars and such a grace in the next match."
"It was a rather simple trick. Using his regular class horse race against the super class from the king, they will certainly lose that round. But then his plus beat the king's regular, and his super beat the king's plus. What a simple trick. And how do you
think of Tian Ji, the high ranked official in China?"
Were Tian Ji lives in nowadays, he will certainly laugh at himself. Even more, were he sitting in the ACM contest right now, he may discover that the horse racing problem can be simply viewed as finding the maximum matching in a bipartite graph. Draw Tian's
horses on one side, and the king's horses on the other. Whenever one of Tian's horses can beat one from the king, we draw an edge between them, meaning we wish to establish this pair. Then, the problem of winning as many rounds as possible is just to find
the maximum matching in this graph. If there are ties, the problem becomes more complicated, he needs to assign weights 0, 1, or -1 to all the possible edges, and find a maximum weighted perfect matching...
However, the horse racing problem is a very special case of bipartite matching. The graph is decided by the speed of the horses --- a vertex of higher speed always beat a vertex of lower speed. In this case, the weighted bipartite matching algorithm is a too
advanced tool to deal with the problem.
In this problem, you are asked to write a program to solve this special case of matching problem.- 输入
- The input consists of many test cases. Each case starts with a positive integer n (n <= 1000) on the first line, which is the number of horses on each side. The next n integers on the second line are the speeds of Tian’s
horses. Then the next n integers on the third line are the speeds of the king’s horses. - 输出
- For each input case, output a line containing a single number, which is the maximum money Tian Ji will get, in silver dollars.
- 例子输入
-
3
92 83 71
95 87 74
2
20 20
20 20
2
20 19
22 18 - 例子输出
-
200
0
0
田忌赛马。不解释了。
。。
中国人都知道
算法分析:
刚開始想着直接从起点開始比較的,但遇到两个数同样甚至后面连续多个同样的的情况时考虑起来就复杂了。对于同样的两个马,比还是不比是问题的思考关键。測试攻克了
两种特殊的情况比方:95 90 88 76 68 and 99 95 90 88 60以及95 95 90 80 and 99 95 95 95,都是对的。但測试了下WA,肯定还是哪里考虑不周全。转换一下思路:
1、当田忌最快的马比齐王最快的马快时,用田忌最快的马对抗齐王最快的马,赢一场。
2、当田忌最慢的马比齐王最慢的马快时,用田忌最慢的马对抗齐王最慢的马,赢一场。
3、当1、2都不满足时。用田忌最慢的马对抗齐王最快的马,若田忌最慢的马比齐王最快的慢时,输一场。否则平局。
注意:
if(a[tr]<b[kl]) //剔除相邻四个数所有相等那一个情况
ans--;
完整代码:
#include<iostream>
#include<algorithm>
#include<functional>
using namespace std;
const int MAXN = 1000;
int a[MAXN+5],b[MAXN+5];
int match(int n)
{
int tl=0,tr=n-1,kl=0,kr=n-1,ans=0;
while(tl<=tr)
{
if(a[tl]>b[kl])
{
ans++;tl++;kl++;
}
else if(a[tr]>b[kr])
{
ans++;tr--;kr--;
}
else
{
if(a[tr]<b[kl]) //剔除相邻四个数所有相等那一个情况
ans--;
tr--;kl++;
}
}
return ans*200;
}
int main()
{
int n,i;
while(cin>>n)
{
for(i=0;i<n;i++)
cin>>a[i];
for(i=0;i<n;i++)
cin>>b[i];
sort(a,a+n,greater<int>());
sort(b,b+n,greater<int>()); cout<<match(n)<<endl;
}
return 0;
}
NYOJ 364 田忌赛马的更多相关文章
- nyoj 364 田忌赛马(贪心)
田忌赛马 时间限制:3000 ms | 内存限制:65535 KB 难度:3 描述 Here is a famous story in Chinese history. "That ...
- nyoj 364——田忌赛马——————【贪心】
田忌赛马 时间限制:3000 ms | 内存限制:65535 KB 难度:3 描述 Here is a famous story in Chinese history. "That ...
- NYOJ 1007
在博客NYOJ 998 中已经写过计算欧拉函数的三种方法,这里不再赘述. 本题也是对欧拉函数的应用的考查,不过考查了另外一个数论基本定理:如何用欧拉函数求小于n且与n互质所有的正整数的和. 记eule ...
- NYOJ 998
这道题是欧拉函数的使用,这里简要介绍下欧拉函数. 欧拉函数定义为:对于正整数n,欧拉函数是指不超过n且与n互质的正整数的个数. 欧拉函数的性质:1.设n = p1a1p2a2p3a3p4a4...pk ...
- NYOJ 333
http://www.cppblog.com/RyanWang/archive/2009/07/19/90512.aspx?opt=admin 欧拉函数 E(x)表示比x小的且与x互质的正整数的个数. ...
- NYOJ 99单词拼接(有向图的欧拉(回)路)
/* NYOJ 99单词拼接: 思路:欧拉回路或者欧拉路的搜索! 注意:是有向图的!不要当成无向图,否则在在搜索之前的判断中因为判断有无导致不必要的搜索,以致TLE! 有向图的欧拉路:abs(In[i ...
- nyoj 10 skiing 搜索+动归
整整两天了,都打不开网页,是不是我提交的次数太多了? nyoj 10: #include<stdio.h> #include<string.h> ][],b[][]; int ...
- [codevs2181]田忌赛马
[codevs2181]田忌赛马 试题描述 中国古代的历史故事"田忌赛马"是为大家所熟知的.话说齐王和田忌又要赛马了,他们各派出N匹马,每场比赛,输的一方将要给赢的一方200两黄金 ...
- ACM 田忌赛马
田忌赛马 时间限制:3000 ms | 内存限制:65535 KB 难度:3 描述 Here is a famous story in Chinese history. "That ...
随机推荐
- 从 QSplitter 中移除 QWidget(使用隐藏与显示,切换十分方便,不要真正销毁)
Splitter 的函数中有addWidget,但是却没有removeWidget, 或者delete之类的功能,所以如果想删去或者暂时不显示其中的某些widget就要自己手动完成这个效果.方法一:取 ...
- “此文件来自其他计算机,可能被阻止以帮助保护该计算机” 教你win7解除阻止程序运行怎么操作
win7 批量解除可执行文件的锁定 "此文件来自其他计算机,可能被阻止以帮助保护该计算机" http://blog.csdn.net/gscsnm/article/details/ ...
- UDP深入骨髓【转】
从UDP的”连接性”说起–告知你不为人知的UDP 原文地址:http://bbs.utest.qq.com/?p=631 很早就计划写篇关于UDP的文章,尽管UDP协议远没TCP协议那么庞大.复杂,但 ...
- Android控件开发之Gallery3D效果
package xiaosi.GalleryFlow; import android.app.Activity; import android.os.Bundle; public class Gall ...
- UVA 12333 Revenge of Fibonacci
https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...
- selenium模块用法详解
selenium用法详解 selenium主要是用来做自动化测试,支持多种浏览器,爬虫中主要用来解决JavaScript渲染问题. 模拟浏览器进行网页加载,当requests,urllib无法正常获取 ...
- jQuery选择器,Ajax请求
jQuery选择器: $("#myELement") 选择id值等于myElement的元素,id值不能重复在文档中只能有一个id值是myElement所以得到的是唯一的元素 $( ...
- 设计模式六大原则(二):里氏替换原则(Liskov Substitution Principle)
里氏替换原则(LSP)由来: 最早是在 妖久八八 年, 由麻神理工学院得一个女士所提出来的. 定义: 1:如果对每一个类型为 T1的对象 o1,都有类型为 T2 的对象o2,使得以 T1定义的所有程序 ...
- HDU1203 I NEED A OFFER! 【贪心】
I NEED A OFFER! Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) ...
- drawerLayout-监听事件四个方法介绍
1.首先我们看一下它的监听事件的生命周期 代码如下 mDrawerLayout.setDrawerListener(new DrawerListener() { @Override public vo ...