ACdream 1127 Base Station (离线查询+树状数组)
题目链接:
http://acdream.info/problem?pid=1127
题目:
移动通信系统中,通信网的建立主要通过基站来完成。
基站可以分为主基站和子基站。子基站和各个移动用户进行连接,子基站必须通过主基站来和外界实现通信。主基站可以覆盖到的范围是一个圆形区域,子基站和主基站的距离小于半径r才能被该主基站覆盖到。半径r由主基站的发射功率确定。
某个区域的移动通信网,包含2个主基站和N个子基站。它们的位置都可以对应到一个整数坐标上。如果子基站至少被一个主基站覆盖,则该子基站是激活的。
现在通信公司在调试设备,它们不停地改变主基站的发射功率,当两个主基站的覆盖半径分别为r1和r2时,需要知道有多少个子基站处于非激活状态。
题解:
对坐标进行转化,子基站对到主基站1(x1,y1)的距离转化为X轴,子基站对到主基站2(x2,y2)的距离转化为Y轴。然后对( 子基站到主基站2(x2,y2)的距离和主基站2的覆盖半径) 进行离散化处理。
然后按X轴进行降序排序,最后将Y轴插入到树状数组中进行维护和离线查询就行了。
复杂度:\(O(m*logn)\)
代码:
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn = 2e5+100;
const int mod = 1e9+7;
struct node
{
int x,y;
int id;
bool operator < (const node &a) {
return (x == a.x && id < a.id) || (x > a.x);
}
}node[maxn];
int num[maxn];
int ans[maxn];
map<int,int>mp;
int sum[maxn];
int k;
void update(int pos,int val){
// std::cout << "k=" << k << '\n';
while(pos<=k)
{
sum[pos]+=val;
pos += (pos&-pos);
}
}
int query(int pos) {
int res = 0;
while(pos)
{
res += sum[pos];
pos -= (pos&-pos);
}
return res;
}
double distance(double x1,double y1,double x2,double y2)
{
return (double)sqrt((x1-x2)*(x1-x2)+(y1-y2)*(y1-y2));
}
int main(int argc, char const *argv[]) {
int x1,x2,y1,y2;
int n,m,x,y;
while(std::cin >> x1 >> y1 >> x2 >> y2)
{
mp.clear();
k = 0;
std::cin >> n;
for(int i=1;i<=n;i++) {
std::cin >> x >> y;
node[i].x = (int)distance(x,y,x1,y1);
node[i].y = (int)distance(x,y,x2,y2);
node[i].id = -i;
num[k++] = node[i].y;
}
std::cin >> m;
for(int i=1;i<=m;i++) {
std::cin >> node[i+n].x >> node[i+n].y;
node[i+n].id = i;
num[k++] = node[i+n].y;
}
sort(num,num+k);
k = unique(num,num+k)-num;
for(int i=0;i<k;i++) {
mp[num[i]] = i+1;
}
sort(node+1,node+n+m+1);
memset(sum,0,sizeof( sum ));
for(int i=1;i<=n+m;i++) {
int pos = mp[node[i].y];
// std::cout << "now= " <<node[i].x<<" "<< node[i].y <<" " << node[i].id<<" " << pos << '\n';
if(node[i].id < 0) {
update(pos,1);
}
else if(node[i].id >= 1){
ans[node[i].id] = query(k) - query(pos-1);
}
}
for(int i=1;i<=m;i++) {
std::cout << ans[i] << '\n';
}
}
// cerr << "Time elapsed: " << 1.0 * clock() / CLOCKS_PER_SEC << " s.\n";
return 0;
}
ACdream 1127 Base Station (离线查询+树状数组)的更多相关文章
- HDU 4746 莫比乌斯反演+离线查询+树状数组
题目大意: 一个数字组成一堆素因子的乘积,如果一个数字的素因子个数(同样的素因子也要多次计数)小于等于P,那么就称这个数是P的幸运数 多次询问1<=x<=n,1<=y<=m,P ...
- BZOJ1878: [SDOI2009]HH的项链 (离线查询+树状数组)
1878: [SDOI2009]HH的项链 题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=1878 Description: HH有一串由 ...
- 【bzoj4540】[Hnoi2016]序列 单调栈+离线+扫描线+树状数组区间修改区间查询
题目描述 给出一个序列,多次询问一个区间的所有子区间最小值之和. 输入 输入文件的第一行包含两个整数n和q,分别代表序列长度和询问数.接下来一行,包含n个整数,以空格隔开,第i个整数为ai,即序列第i ...
- 【loj6041】「雅礼集训 2017 Day7」事情的相似度 后缀自动机+STL-set+启发式合并+离线+扫描线+树状数组
题目描述 给你一个长度为 $n$ 的01串,$m$ 次询问,每次询问给出 $l$ .$r$ ,求从 $[l,r]$ 中选出两个不同的前缀的最长公共后缀长度的最大值. $n,m\le 10^5$ 题解 ...
- hdu-3333 Turing Tree 离线区间+树状数组(区间不同数的和)
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=3333 题目大意: 给出一数组,以及m个查询区间,每次查询该区间不同数字的和.相同数字只加一次. 解题 ...
- [CF369E]Valera and Queries_离线_树状数组
Valera and Queries 题目链接:codeforces.com/problemset/problem/369/E 数据范围:略. 题解: 这种题,就单独考虑一次询问即可. 我们发现,包括 ...
- bzoj3529(莫比乌斯反演+离线+树状数组)
在你以为理解mobus的时候,苦苦想通过化简公式来降低复杂度时,这题又打了我一巴掌. 看来我并没有理解到acmicpc比赛的宗旨啊. 这么多次查询可以考虑离线操作,使用树状数组单点更新. /***** ...
- bzoj 3110: [Zjoi2013]K大数查询 树状数组套线段树
3110: [Zjoi2013]K大数查询 Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 1384 Solved: 629[Submit][Stat ...
- HDU 4638 Group (2013多校4 1007 离线处理+树状数组)
Group Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submi ...
随机推荐
- crawlspider抽屉爬取实例+分布
创建项目 scrapy startproject choutiPro 创建爬虫文件 scrapy genspider -t crawl chouti www.xxx.com 进入pycharm 培训 ...
- 【Uva 10723】Cyborg Genes
[Link]: [Description] 给你两个串s1,s2; 让你生成一个串S; 使得s1和s2都是S的子列; 要求S最短; 求S的不同方案个数; [Solution] 设两个串的长度分别为n1 ...
- AutoLayout具体解释+手把手实战
首先说一下这篇博客尽管是标记为原创,可是事实并不是本人亲自写出来的.知识点和样例本人花了一天各处查找和整理终于决定写一个汇总的具体解释,解去各位朋友到处盲目查找的必要,由于不是转载某一个人的内容.故此 ...
- LintCode 二叉树的遍历 (非递归)
前序: class Solution { public: /** * @param root: The root of binary tree. * @return: Preorder in vect ...
- dlmalloc 2.8.6 源代码具体解释(5)
本文章由vector03原创, 转载请注明出处. 邮箱地址: mmzsmm@163.com, 欢迎来信讨论. 3. 分配及实现 本章节介绍dlmalloc的分配算法和实现.由于存在多mspac ...
- android中9-patch图片的使用
看了非常多文章的介绍,9.png图片有两种区域:可扩展区和内容显示区. 弄了半天才明确什么叫做可扩展区,什么叫做内容显示区. 分享一下自己的理解. 下图是某博客的截图: 图片来自:http://blo ...
- uva103 - Stacking Boxes(DAG)
题目:uva103 - Stacking Boxes(DAG) 题目大意:给出N个boxes, 而且给出这些箱子的维度.要求找一个最长的序列.可以使得以下的箱子一定可以有个维度序列大于上面的那个箱子的 ...
- bash命令集---文件的操作
git bash命令集: clear:清除窗口中的内容 ls touch cat more head tail mv cp rm diff chmod gzip gunzip gzcat lpr lp ...
- angularjs之ui-bootstrap的Datepicker Popup不使用JS实现双日期选择控件
最开始使用ui-bootstrap的Datepicker Popup日期选择插件实现双日期选择时间范围时,在网上搜了一些通过JS去实现的方法,不过后来发现可以不必通过JS去处理,只需要使用其自身的属性 ...
- iframe自适应高度解决方法 .
<div id="leftBar"> <iframe name="tag" src="_iframe.html" styl ...