开始时直接设了一个状态,dp[i][j]为发现i种bug,j个系统有bug的期望天数。但很错误,没能转移下去。。。。

看了题解,设状态dp[i][j]为已发现i种bug,j个系统有bug,到完成目标状态所需要的期望的天数。妙啊,这样一设状态,就很好更解了。如,由dp[i][j]

可以到达状态dp[i][j+1],则到达它的概率很明显可求出为p=(i/n)*((s-j)/s),则是,需要dp[i][j+1](期望)天数的概率就是p。这就很容易理解了啊,高!高!高!

由dp[i][j]可以转移出四个状态,分别是a1=dp[i][j],a2=dp[i+1][j+1],a3=dp[i][j+1],a4=dp[i+1][j]。分别对应概率p1,p2...

则有方程dp[i][j]=sum(ai*pi)+1.最后要加1是因为,必须要花费一天。

于是,

#include<iostream>
#include<cstdio>
#include<cstring> using namespace std; const int N=1010; double dp[N][N]; int main(){
int n,s;
while(~scanf("%d%d",&n,&s)){
dp[n][s]=0;
for(int i=n;i>=0;i--)
for(int j=s;j>=0;j--){
if(i==n && j==s)
continue;
dp[i][j]=(i*(s-j)*dp[i][j+1]+(n-i)*j*dp[i+1][j]+(n-i)*(s-j)*dp[i+1][j+1]+n*s)/(n*s-i*j);
}
printf("%.4f\n",dp[0][0]);
}
return 0;
}

  

POJ 2906 数学期望的更多相关文章

  1. 【POJ】2096 Collecting Bugs(数学期望)

    题目 传送门:QWQ 分析 数学期望 用$ dp[i][j] $表示发现了在$ j $个子系统里面发现了$ i $个bug到$ s $个子系统里面发现了$ n $个bug需要的期望天数. $ dp[0 ...

  2. [BZOJ 3143][HNOI2013]游走(数学期望)

    题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=3143 分析: 易得如果知道了每条边经过的数学期望,那就可以贪心着按每条边的期望的大小赋 ...

  3. Codeforces Round #259 (Div. 2) C - Little Pony and Expected Maximum (数学期望)

    题目链接 题意 : 一个m面的骰子,掷n次,问得到最大值的期望. 思路 : 数学期望,离散时的公式是E(X) = X1*p(X1) + X2*p(X2) + …… + Xn*p(Xn) p(xi)的是 ...

  4. 数学期望和概率DP题目泛做(为了对应AD的课件)

    题1: Uva 1636 Headshot 题目大意: 给出一个000111序列,注意实际上是环状的.问是0出现的概率大,还是当前是0,下一个还是0的概率大. 问题比较简单,注意比较大小: A/C & ...

  5. [2013山东ACM]省赛 The number of steps (可能DP,数学期望)

    The number of steps nid=24#time" style="padding-bottom:0px; margin:0px; padding-left:0px; ...

  6. 【BZOJ2134】单位错选(数学期望,动态规划)

    [BZOJ2134]单位错选(数学期望,动态规划) 题面 BZOJ 题解 单独考虑相邻的两道题目的概率就好了 没了呀.. #include<iostream> #include<cs ...

  7. 【BZOJ1415】【NOI2005】聪聪和可可(动态规划,数学期望)

    [BZOJ1415][NOI2005]聪聪和可可(动态规划,数学期望) 题面 BZOJ 题解 先预处理出当可可在某个点,聪聪在某个点时 聪聪会往哪里走 然后记忆化搜索一下就好了 #include< ...

  8. 【Luogu1291】百事世界杯之旅(动态规划,数学期望)

    [Luogu1291]百事世界杯之旅(动态规划,数学期望) 题面 洛谷 题解 设\(f[i]\)表示已经集齐了\(i\)个名字的期望 现在有两种方法: 先说我自己的: \[f[i]=f[i-1]+1+ ...

  9. 【BZOJ4872】分手是祝愿(动态规划,数学期望)

    [BZOJ4872]分手是祝愿(动态规划,数学期望) 题面 BZOJ 题解 对于一个状态,如何求解当前的最短步数? 从大到小枚举,每次把最大的没有关掉的灯关掉 暴力枚举因数关就好 假设我们知道了当前至 ...

随机推荐

  1. 洛谷—— P1074 靶形数独

    https://www.luogu.org/problem/show?pid=1074 题目描述 小城和小华都是热爱数学的好学生,最近,他们不约而同地迷上了数独游戏,好胜的他 们想用数独来一比高低.但 ...

  2. 洛谷 P1124 文件压缩

    P1124 文件压缩 题目背景 提高文件的压缩率一直是人们追求的目标.近几年有人提出了这样一种算法,它虽然只是单纯地对文件进行重排,本身并不压缩文件,但是经这种算法调整后的文件在大多数情况下都能获得比 ...

  3. maven下载的jar包可以查看源码

    1:Maven命令下载源码和javadocs 当在IDE中使用Maven时如果想要看引用的jar包中类的源码和javadoc需要通过maven命令下载这些源码,然后再进行引入,通过mvn命令能够容易的 ...

  4. [Office]PPT 2013如何设置图片为半透明?

    PPT里面似乎无法直接为图片设置透明度属性.下面是一种变通的办法. 1,插入一个和图片大小一致的图形(矩形):2,右键插入的矩形,然后在属性设置里选择“图片填充”,选择以需要的图片填充到该矩形里:3, ...

  5. Android设计模式(三)--装饰模式

    1.定义: Attach additional responsibilities to an object dynamically keeping the same interface.  Decoa ...

  6. cocos2d-x 3.0游戏实例学习笔记《卡牌塔防》第一步---開始界面&amp;关卡选择

    /* 说明: **1.本次游戏实例是<cocos2d-x游戏开发之旅>上的最后一个游戏,这里用3.0重写并做下笔记 **2.我也问过木头本人啦.他说:随便写,第一别全然照搬代码:第二能够说 ...

  7. Oracle SQL性能优化系列

    1. 选用适合的ORACLE优化器 ORACLE的优化器共有3种: a. RULE (基于规则) b. COST (基于成本) c. CHOOSE (选择性) 设置缺省的优化器,可以通过对init.o ...

  8. Oracle 性能优化的基本方法

    Oracle 性能优化的基本方法概述 1)设立合理的性能优化目标. 2)测量并记录当前性能. 3)确定当前Oracle性能瓶颈(Oracle等待什么.哪些SQL语句是该等待事件的成分). 4)把等待事 ...

  9. 杂项-项目管理:WBS(工作分解结构)

    ylbtech-杂项-项目管理:WBS(工作分解结构) WBS:工作分解结构(Work Breakdown Structure) 创建WBS:创建WBS是把项目 交付成果和项目工作分解成较小的,更易于 ...

  10. 利用JDBC或者事物或者调用存储过程实现往MySQL插入百万级数据

    转自:http://www.cnblogs.com/fnz0/p/5713102.html 想往某个表中插入几百万条数据做下测试, 原先的想法,直接写个循环10W次随便插入点数据试试吧,好吧,我真的很 ...