DML学习原文链接:http://blog.csdn.net/lzt1983/article/details/7884553

一篇metric learning(DML)的综述文章,对DML的意义、方法论和经典论文做一个介绍,同时对我的研究经历和思考做一个总结。可惜一直没有把握自己能够写好,因此拖到现在。

先列举一些DML的参考资源,以后有时间再详细谈谈。

1. Wikipedia

2. CMU的Liu Yang总结的关于DML的综述页面。对DML的经典算法进行了分类总结,其中她总结的论文非常有价值,也是我的入门读物。

3. ECCV 2010的turorial

4. Weinberger的页面,上面有LMNN(Distance Metric Learning for Large Margin Nearest Neighbor Classification)的论文、sclides和代码。

5. ITML(Information Throretic Metric Learning)。ITML是DML的经典算法,获得了ICML 2007的best paper award。sclides

顶级会议上矩阵学习的paper清单http://blog.csdn.net/lzt1983/article/details/7831524

近2年顶级会议上度量学习相关的论文,数量之多,颇受震动。这其中怕是不乏灌水炒作新概念的文章,看来DML大有前几年sparse coding的势头啊。

ICML 2012

Maximum Margin Output Coding

Information-theoretic Semi-supervised Metric Learning via Entropy Regularization

A Hybrid Algorithm for Convex Semidefinite Optimization

Information-Theoretical Learning of Discriminative Clusters for Unsupervised Domain Adaptation

Similarity Learning for Provably Accurate Sparse Linear Classification

ICML 2011

Learning Discriminative Fisher Kernels

Learning Multi-View Neighborhood Preserving Projections

CVPR 2012

Order Determination and Sparsity-Regularized Metric Learning for Adaptive Visual Tracking

Non-sparse Linear Representations for Visual Tracking with Online Reservoir Metric Learning

Unsupervised Metric Fusion by Cross Diffusion

Learning Hierarchical Similarity Metrics

Large Scale Metric Learning from Equivalence Constraints

Neighborhood Repulsed Metric Learning for Kinship Verification

Learning Robust and Discriminative Multi-Instance Distance for Cost Effective Video Classification

PCCA: a new approach for distance learning from sparse pairwise constraints

Group Action Induced Distances for Averaging and Clustering Linear Dynamical Systems with Applications
to the Analysis of Dynamic Visual Scenes

CVPR
2011

A Scalable Dual Approach to Semidefinite Metric Learning

AdaBoost
on Low-Rank PSD Matrices for Metric Learning with Applications in Computer Aided Diagnosis

Adaptive Metric Differential Tracking (HUST)

Tracking Low Resolution Objects by Metric Preservation (HUST)

ACM MM 2012

Optimal Semi-Supervised Metric Learning for Image Retrieval

Low Rank Metric Learning for Social Image Retrieval

Activity-Based Person Identification Using Sparse Coding and Discriminative Metric Learning

Deep Nonlinear Metric Learning with Independent Subspace Analysis for Face Verification

ACM MM 2011

Biased Metric Learning for Person-Independent Head Pose Estimation

ICCV
2011

Learning Mixtures of Sparse Distance Metrics for Classification and Dimensionality Reduction

Unsupervised Metric Learning for Face Identification in TV Video

Random Ensemble Metrics for Object Recognition

Learning Nonlinear Distance Functions using Neural Network for Regression with Application to Robust Human Age Estimation

Learning parameterized histogram kernels on the simplex manifold for image and action classification

ECCV
2012

Metric Learning for Large Scale Image Classification: Generalizing to New Classes at Near-Zero Cost

Dual-force Metric Learning for Robust Distractor Resistant Tracker

Learning to Match Appearances by Correlations in a Covariance Metric Space

Image Annotation Using Metric Learning in Semantic Neighbourhoods

Measuring Image Distances via Embedding in a Semantic Manifold

Supervised Earth Mover’s Distance Learning and Its Computer Vision Applications

Learning Class-to-Image Distance via Large Margin and L1-norm Regularization

Labeling Images by Integrating Sparse Multiple Distance Learning and Semantic Context Modeling

IJCAI 2011

Distance Metric Learning Under Covariate Shift

Learning a Distance Metric by Empirical Loss Minimization

AAAI
2011

Efficiently Learning a Distance Metric for Large Margin Nearest Neighbor Classification

NIPS
2011

Learning a Distance Metric from a Network

Learning a Tree of Metrics with Disjoint Visual Features

Metric Learning with Multiple Kernels

KDD 2012

Random Forests for Metric Learning with Implicit Pairwise Position Dependence

WSDM 2011

Mining Social Images with Distance Metric Learning for Automated
Image Tagging

Metric Learning度量学习:**矩阵学习和图学习的更多相关文章

  1. 关于图计算&图学习的基础知识概览:前置知识点学习(Paddle Graph Learning (PGL))

    关于图计算&图学习的基础知识概览:前置知识点学习(Paddle Graph Learning (PGL)) 欢迎fork本项目原始链接:关于图计算&图学习的基础知识概览:前置知识点学习 ...

  2. Paddle Graph Learning (PGL)图学习之图游走类模型[系列四]

    Paddle Graph Learning (PGL)图学习之图游走类模型[系列四] 更多详情参考:Paddle Graph Learning 图学习之图游走类模型[系列四] https://aist ...

  3. Reinforcement Learning,微信公众号:DRL学习

    欢迎大家关注微信公众号:DRL学习,我们一起来学习强化学习和深度强化学习的算法及现状应用问题. 强化学习简单说就是学习如何最大化未来奖励的预期总和,以及agent学会在环境中做出的行动序列,其中随机状 ...

  4. 图学习【参考资料2】-知识补充与node2vec代码注解

    本项目参考: https://aistudio.baidu.com/aistudio/projectdetail/5012408?contributionType=1 *一.正题篇:DeepWalk. ...

  5. 【转载】跟着9张思维导图学习JavaScript

    原文:跟着9张思维导图学习JavaScript 学习的道路就是要不断的总结归纳,好记性不如烂笔头,so,下面将 po 出我收集的 9 张 JavaScript相关的思维导图(非原创). 思维导图小ti ...

  6. Comprehensive learning path – Data Science in Python深入学习路径-使用python数据中学习

    http://blog.csdn.net/pipisorry/article/details/44245575 关于怎么学习python,并将python用于数据科学.数据分析.机器学习中的一篇非常好 ...

  7. 用Spark学习矩阵分解推荐算法

    在矩阵分解在协同过滤推荐算法中的应用中,我们对矩阵分解在推荐算法中的应用原理做了总结,这里我们就从实践的角度来用Spark学习矩阵分解推荐算法. 1. Spark推荐算法概述 在Spark MLlib ...

  8. Learning ROS for Robotics Programming Second Edition学习笔记(六) indigo xtion pro live

    中文译著已经出版,详情请参考:http://blog.csdn.net/ZhangRelay/article/category/6506865 Learning ROS for Robotics Pr ...

  9. Learning ROS for Robotics Programming Second Edition学习笔记(五) indigo computer vision

    中文译著已经出版,详情请参考:http://blog.csdn.net/ZhangRelay/article/category/6506865 Learning ROS for Robotics Pr ...

随机推荐

  1. cuda npp库旋转图片

    #include <stdio.h> #include <stdlib.h> #include <string.h> #include <assert.h&g ...

  2. 洛谷 2387 NOI2014魔法森林 LCT

    [题解] 我们先把边按照$a$值从小到大排序,并按照这个顺序加边. 如果当前要加入的边连接的两点$u$与$v$已经是连通的,那么直接加入这条边就会出现环.这时我们需要删除这个环中$b$值最大的边.因此 ...

  3. docker的容器可视化工具portainer

    1.搜索镜像 [root@holly ~]# docker search portainer 2.下载portainer [root@holly ~]# docker pull portainer/p ...

  4. SIM900A 发送AT+CSTT 总是 返回Error的原因分析

    检查 模块的供电是否正常 本例 修改供电后 联网恢复正常.

  5. git游戏杂谈

    git作为一个知名小游戏,在被Linus开发出来后就广受好评,在程序员圈子内迅速传播,以至于现在很多程序员可以一日无饭,却不能一日无git.是什么能让各路程序员如此着迷?今天,让我们走进git,看一看 ...

  6. hdu_1017_A Mathematical Curiosity_201310280948

    A Mathematical Curiosity http://acm.hdu.edu.cn/showproblem.php?pid=1017 Time Limit: 2000/1000 MS (Ja ...

  7. hdu_1013_Digital Roots_201310121652

    Digital Roots Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Tot ...

  8. Atitit.一个cms有多少少扩展点,多少api&#160;wordpress&#160;&#160;cms有多少api。。扩展点

    Atitit.一个cms有多少少扩展点,多少api wordpress  cms有多少api. . 扩展点 1. Api分类 WordPress APIs 1 1.1. 1 函数分类 2 1.2. 函 ...

  9. UIScrollView滚动时隐藏底部导航栏问题

    - (void)scrollViewDidScroll:(UIScrollView *)scrollView { NSLog(@"開始滚动"); int currentPostio ...

  10. 解决Android 应用方法数不能超过65K的问题

    Conversion to Dalvik format failed:Unable toexecute dex: method ID not in [0, 0xffff]: 65536 假设你的应用出 ...