matlab(2) Logistic Regression: 画出样本数据点plotData
画出data数据
data数据
34.62365962451697,78.0246928153624,0
30.28671076822607,43.89499752400101,0
35.84740876993872,72.90219802708364,0
60.18259938620976,86.30855209546826,1
79.0327360507101,75.3443764369103,1
45.08327747668339,56.3163717815305,0
61.10666453684766,96.51142588489624,1
75.02474556738889,46.55401354116538,1
76.09878670226257,87.42056971926803,1
84.43281996120035,43.53339331072109,1
ex2.m文件
%% Initialization(灰色代表注释)
clear ; close all; clc (clear: Clear variables and functions from memory; close: close figure; clc: Clear command window.)
%% Load Data
% The first two columns contains the exam scores and the third column
% contains the label.
data = load('ex2data1.txt');
X = data(:, [1, 2]); y = data(:, 3); (取data的第一列至第二列给X,取data的第三列给y)
%% ==================== Part 1: Plotting ====================
% We start the exercise by first plotting the data to understand the
% the problem we are working with.
fprintf(['Plotting data with + indicating (y = 1) examples and o ' ... (...表示与下一行相连)
'indicating (y = 0) examples.\n']);
plotData(X, y); (调用函数plotData(X,y),参见下面的plotData.m)
% Put some labels
hold on; (保持住现有的plot和所有的坐标属性,包括颜色和线条的style)
% Labels and Legend
xlabel('Exam 1 score') (给x轴加上label)
ylabel('Exam 2 score') (给y轴加上label)
% Specified in plot order
legend('Admitted', 'Not admitted') (给两种不同的点的标记加说明)
hold off; (hold 关闭)
fprintf('\nProgram paused. Press enter to continue.\n');
pause; (暂停运行,等待用户响应pause causes a procedure to stop and wait for the user to strike any key before continue)
plotData.m文件
function plotData(X, y) (在文件的开头应写上新定义的function,文件的名称(plotData.m)中的plotData应与function的名称一至)
%PLOTDATA Plots the data points X and y into a new figure
% PLOTDATA(x,y) plots the data points with + for the positive examples
% and o for the negative examples. X is assumed to be a Mx2 matrix.
% Create New Figure
figure; hold on; (figure:创建一个figure 窗口)
% ====================== YOUR CODE HERE ======================
% Instructions: Plot the positive and negative examples on a
% 2D plot, using the option 'k+' for the positive
% examples and 'ko' for the negative examples.
%
% Find indices of positive and negative example
pos = find(y==1); neg = find(y==0); (返回所有y==1的点的线性序列(linear indices (如上述data则返回(4,5,7,8,9,10)))
%plot example
plot(X(pos,1), X(pos,2), 'k+', 'LineWidth', 2, 'MarkerSize', 7); (将相应序列对应的X矩阵的元素画出(如第4行的第一列的值做为x轴的值,第4行的第二列的值做为y轴的值); k+表示线的颜色为黑色(black),形状为+; MarkerSize 表示+形状的大小 )
plot(X(neg,1), X(neg,2), 'ko', 'MarkerFaceColor', 'y', 'MarkerSize', 7); (MarkerFaceColor: 表示填充在o里面的颜色为黄色)
% =========================================================================
hold off;
end (表示plotData(X, y)函数的结束)
matlab(2) Logistic Regression: 画出样本数据点plotData的更多相关文章
- matlab(3) Logistic Regression: 求cost 和gradient \ 求sigmoid的值
sigmoid.m文件 function g = sigmoid(z)%SIGMOID Compute sigmoid functoon% J = SIGMOID(z) computes the si ...
- matlab(4) Logistic regression:求θ的值使用fminunc / 画decision boundary(直线)plotDecisionBoundary
画decision boundary(直线) %% ============= Part 3: Optimizing using fminunc =============% In this exer ...
- MATLAB 统计数据并画出统计直方图
统计FilmTrust(0.5-4.0分).CiaoDVD(1-5分).MovieLens(1-5分) 等 rating 数据集分值的分布: 以 统计FilmTrust(0.5-4.0分) 为例: ...
- Stanford机器学习---第三讲. 逻辑回归和过拟合问题的解决 logistic Regression & Regularization
原文:http://blog.csdn.net/abcjennifer/article/details/7716281 本栏目(Machine learning)包括单参数的线性回归.多参数的线性回归 ...
- week3编程作业: Logistic Regression中一些难点的解读
%% ============ Part : Compute Cost and Gradient ============ % In this part of the exercise, you wi ...
- matlab(6) Regularized logistic regression : plot data(画样本图)
Regularized logistic regression : plot data(画样本图) ex2data2.txt 0.051267,0.69956,1-0.092742,0.68494, ...
- Matlab实现线性回归和逻辑回归: Linear Regression & Logistic Regression
原文:http://blog.csdn.net/abcjennifer/article/details/7732417 本文为Maching Learning 栏目补充内容,为上几章中所提到单参数线性 ...
- matlab(7) Regularized logistic regression : mapFeature(将feature增多) and costFunctionReg
Regularized logistic regression : mapFeature(将feature增多) and costFunctionReg ex2_reg.m文件中的部分内容 %% == ...
- matlab(8) Regularized logistic regression : 不同的λ(0,1,10,100)值对regularization的影响,对应不同的decision boundary\ 预测新的值和计算模型的精度predict.m
不同的λ(0,1,10,100)值对regularization的影响\ 预测新的值和计算模型的精度 %% ============= Part 2: Regularization and Accur ...
随机推荐
- django使用pyecharts(2)----django加入echarts_前后台分离
二.Django 中使用 pyecharts. 前后端分离 1.安装 djangorestframework linux pip3 install djangorestframework window ...
- Python 实例代码二
1.实现isNum()函数,参数为一个字符串,如果这个字符串属于整数.浮点数或复数的表示,则返回True,否则返回False def isNum(word): try: word=type(eval( ...
- 11 模块、模块的搜索顺序、__file__内置属性、__name__属性
模块的概念 一个python文件就是一个模块. 模块名同时也是一个标识符,需要符合标识符的命名规则. 在模块中定义的全局变量.函数.类 都是个外界提供的直接使用的工具. 模块就好比工具包,要想使用一个 ...
- WUSTOJ 1305: 最短路(Java)
题目链接:
- 1010 Radix:猥琐的测试数据
谨以此题纪念边界测试数据浪费了我多少时间:https://pintia.cn/problem-sets/994805342720868352/problems/994805507225665536 # ...
- 微软商店一直安装不上Intel Media SDK DFP
具体表现为一直安装失败,但是下载进度条一直在,无法去除. 此方法来自 https://answers.microsoft.com/en-us/windows/forum/all/error-code- ...
- PowerBuilder学习笔记之根据新PBL文件替换pbd文件的方法
在程序目录上右键,选择Build Runtime Library 在Build Runtime Library 页面点击OK,注意,会将全部的文件重新编译
- 启动 kibana 失败
错误信息: Sending Logstash logs to /usr/local/logstash-6.4.3/logs which is now configured via log4j2.pro ...
- Python之算法模型-5.1
一.这里学习的算法模型包含监督学习和非监督学习两个方式的算法. 其中监督学习的主要算法分为(分类算法,回归算法),无监督学习(聚类算法),这里的几种算法,主要是学习他们用来做预测的效果和具体的使用方式 ...
- Snort Rule Infographic
Snort Rule Infographic Official Documentation Snort FAQ Snort Team / Open Source Community Snort Us ...