本文旨在解析 spark on Yarn 的内存管理,使得 spark 调优思路更加清晰

内存相关参数

spark 是基于内存的计算,spark 调优大部分是针对内存的,了解 spark 内存参数有也助于我们理解 spark 内存管理

  • spark.driver.memory:默认 512M
  • spark.executor.memory:默认 512M
  • spark.yarn.am.memory:默认 512M
  • spark.yarn.driver.memoryOverhead:driver memory * 0.10, with minimum of 384
  • spark.yarn.executor.memoryOverhead:executor memory * 0.10, with minimum of 384
  • spark.yarn.am.memoryOverhead:am memory * 0.10, with minimum of 384
  • executor-cores:executor 相当于一个进程,cores 相当于该进程里的线程

内存解析

spark.xxx.memory / --xxx-memory 是 JVM 堆区域,但是 JVM 本身也会占用一定的堆空间,这部分由 spark.yarn.xxx.memoryOverhead 确定,二者关系如下图

内存分配

为了更好的利用 spark 内存,通常我们需要在 Yarn 集群中设置如下参数  【非必须】

<property>
<name>yarn.nodemanager.resource.memory-mb</name>
<value>106496</value> <!-- 104G -->
</property>
<property>
<name>yarn.scheduler.minimum-allocation-mb</name>
<value>2048</value>
</property>
<property>
<name>yarn.scheduler.maximum-allocation-mb</name>
<value>106496</value>
</property>
<property>
<name>yarn.app.mapreduce.am.resource.mb</name>
<value>2048</value>
</property>
  • yarn.app.mapreduce.am.resource.mb:am 能申请的最大内存
  • yarn.nodemanager.resource.memory-mb:nodemanager 能申请的最大内存
  • yarn.scheduler.minimum-allocation-mb:任务调度时一个 container 可申请的最小内存
  • yarn.scheduler.maximum-allocation-mb:任务调度时一个 container 可申请的最大内存

yarn.scheduler.minimum-allocation-mb 是 Container 的内存基本单位,也就是说 Container 的内存必须是 yarn.scheduler.minimum-allocation-mb 的整数倍,

比如 yarn.scheduler.minimum-allocation-mb 设置为 2G,2048M,

如果内存申请为 512M,512+384<2048M,会被分配 2G 内存,

如果内存申请为 3G,3072+384=3456M<4096M,会被分配 4G 内存,

如果申请内存为 6G,6144+614=6758<8192M,会被分配 8G 内存,          【max(6144*0.1, 384)=614】

所以当设定 --executor-memory 为 3G 时,Container 实际内存并非 3G

常见问题

常见的问题无非就是 内存不足 或者 container 被杀死

常规思路

1. 第一解决办法就是增加总内存    【此法不能解决所有问题】

2. 其次考虑数据倾斜问题,因为数据倾斜导致某个 task 内存不足,其它 task 内存足够

  // 最简单的方法是 repartition    【此法不能解决所有问题】

3. 考虑增加每个 task 的可用内存

  // 减少 Executor 数

  // 减少 executor-cores 数

参数设置注意事项

executor-memory

1. 设置过大,会导致 GC 过程很长,64G 是推荐的 内存上限  【根据硬件不同,可寻找合适的上限】

2. 设置过小,会导致 GC 频繁,影响效率

executor-cores

1. 设置过大,并行度会很高,容易导致 网络带宽占满,特别是从 HDFS 读取数据,或者是 collect 数据回传 Driver

2. 设置过大,使得多个 core 之间争夺 GC 时间以及资源,导致大部分时间花在 GC 上

参考资料:

https://www.cnblogs.com/saratearing/p/5813403.html#top

https://blog.csdn.net/pearl8899/article/details/80368018

https://www.so.com/s?q=with+minimum+of+384&src=se_zoned

https://blog.cloudera.com/how-to-tune-your-apache-spark-jobs-part-2/  英文博客

spark调优篇-Spark ON Yarn 内存管理(汇总)的更多相关文章

  1. spark调优篇-spark on yarn web UI

    spark on yarn 的执行过程在 yarn RM 上无法直接查看,即 http://192.168.10.10:8088,这对于调试程序很不方便,所以需要手动配置 配置方法 1. 配置 spa ...

  2. 【翻译】Spark 调优 (Tuning Spark) 中文版

    由于Spark自己的调优guidance已经覆盖了很多很有价值的点,因此这里直接翻译一份过来.也作为一个积累. Spark 调优 (Tuning Spark) 由于大多数Spark计算任务是在内存中运 ...

  3. spark调优篇-oom 优化(汇总)

    spark 之所以需要调优,一是代码执行效率低,二是经常 OOM 内存溢出 内存溢出无非两点: 1. Driver 内存不够 2. Executor 内存不够 Driver 内存不够无非两点: 1. ...

  4. Android性能调优篇之探索JVM内存分配

    开篇废话 今天我们一起来学习JVM的内存分配,主要目的是为我们Android内存优化打下基础. 一直在想以什么样的方式来呈现这个知识点才能让我们易于理解,最终决定使用方法为:图解+源代码分析. 欢迎访 ...

  5. spark调优篇-数据倾斜(汇总)

    数据倾斜 为什么会数据倾斜 spark 中的数据倾斜并不是说原始数据存在倾斜,原始数据都是一个一个的 block,大小都一样,不存在数据倾斜: 而是指 shuffle 过程中产生的数据倾斜,由于不同的 ...

  6. Android性能调优篇之探索垃圾回收机制

    开篇废话 如果我们想要进行内存优化的工作,还是需要了解一下,但这一块的知识属于纯理论的,有可能看起来会有点枯燥,我尽量把这一篇的内容按照一定的逻辑来走一遍.首先,我们为什么要学习垃圾回收的机制,我大概 ...

  7. 【Spark篇】---Spark调优之代码调优,数据本地化调优,内存调优,SparkShuffle调优,Executor的堆外内存调优

    一.前述 Spark中调优大致分为以下几种 ,代码调优,数据本地化,内存调优,SparkShuffle调优,调节Executor的堆外内存. 二.具体    1.代码调优 1.避免创建重复的RDD,尽 ...

  8. (转)Spark性能优化:资源调优篇

      在开发完Spark作业之后,就该为作业配置合适的资源了.Spark的资源参数,基本都可以在spark-submit命令中作为参数设置.很多Spark初学者,通常不知道该设置哪些必要的参数,以及如何 ...

  9. 【转载】 Spark性能优化:资源调优篇

    在开发完Spark作业之后,就该为作业配置合适的资源了.Spark的资源参数,基本都可以在spark-submit命令中作为参数设置.很多Spark初学者,通常不知道该设置哪些必要的参数,以及如何设置 ...

随机推荐

  1. codeforces gym #101987K -TV ShowGame(2-SAT)

    题目链接: https://codeforces.com/gym/101987 题意: 有长度为$n$的只包含$B,R$的字符串 有m种关系,每个关系说出三个位置的确切字符 这三个位置的字符最多有一个 ...

  2. Redis 的几种常见使用方式

    常见使用方式 Redis 的几种常见使用方式包括: Redis 单副本 Redis 多副本(主从) Redis Sentinel(哨兵) Redis Cluster Redis 自研 各种使用方式的优 ...

  3. 【Robot Framework 】项目实战汇总

    写在前面 RF自动化的文章记录基本完成,建一个汇总目录,方便查看. [Robot Framework 项目实战]汇总 ∮[RF 项目实战 00]环境搭建 ∮[RF 项目实战 01]使用 Request ...

  4. IOS项目集成ShareSDK实现第三方登录、分享、关注等功能

    (1)官方下载ShareSDK iOS 2.8.8,地址:http://sharesdk.cn/ (2)根据实际情况,引入相关的库,参考官方文档. (3)在项目的AppDelegate中一般情况下有三 ...

  5. ubuntu 切换默认python版本

    现在的python项目都是基于python3的了,再用ubuntu的时候默认的版本是py2的,所以想切换到py3上: 打开终端: sudo update-alternatives --install ...

  6. Qt编写数据可视化大屏界面电子看板11-自定义控件

    一.前言 说到自定义控件,我是感觉特别熟悉的几个字,本人亲自原创的自定义控件超过110个,都是来自各个行业的具体应用真实需求,而不是凭空捏造的,当然有几个小控件也有点凑数的嫌疑,在编写整个数据可视化大 ...

  7. SQL Server 高级函数汇总【转】

    看到一个帖子,博主收集的很全,里面涵盖了一些常用的内置函数,特此收藏下: 原文链接:https://blog.csdn.net/wang1127248268/article/details/53406 ...

  8. [转]新浪云存储SCS Node.js使用指南

    转载自:https://github.com/SinaCloudStorage/scs-sdk-js scs-sdk-js 新浪云存储(SCS) SDK for Node.js Installatio ...

  9. oracle数据库可视化工具

    1.TreeSoft基于web网页方式,管理维护oracle数据,功能包括:SQL在线执行,数据在线维护管理,数据导出,数据交换同步等. 支持MySQL,Oracle,DB2,PostgreSQL,S ...

  10. linux 文件赋权限

    chown tomcat:tomcat /logs chmod 766 /logs