[HDU 5608]Function(莫比乌斯反演 + 杜教筛)
题目描述
有N2−3N+2=∑d∣Nf(d)N^2-3N+2=\sum_{d|N} f(d)N2−3N+2=∑d∣Nf(d)
求∑i=1Nf(i)\sum_{i=1}^{N} f(i)∑i=1Nf(i) mod 109+7~mod~10^9+7 mod 109+7
1<=T<=5001<=N<=1091<=T<=500\\1<=N<=10^91<=T<=5001<=N<=109
只有最多555组数据N>106N>10^6N>106
题目分析
f(n)=n2−3n+2−∑d∣n,d<nf(d)∴S(n)=∑i=1n(i2−3i+2−∑d∣i,d<if(d)) =∑i=1ni2−3∑i=1ni+2n−∑k=2n∑d=1⌊nk⌋f(d) =∑i=1ni2−3∑i=1ni+2n−∑k=2nS(⌊nk⌋) =n(n+1)(n−4)3+2n−∑k=2nS(⌊nk⌋)
f(n)=n^2-3n+2-\sum_{d|n,d<n}f(d)\\
\therefore S(n)=\sum_{i=1}^n(i^2-3i+2-\sum_{d|i,d<i}f(d))\\
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ =\sum_{i=1}^ni^2-3\sum_{i=1}^ni+2n-\sum_{k=2}^n\sum_{d=1}^{\lfloor\frac nk\rfloor}f(d)\\
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ =\sum_{i=1}^ni^2-3\sum_{i=1}^ni+2n-\sum_{k=2}^nS({\lfloor\frac nk\rfloor})\\
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ =\frac {n(n+1)(n-4)}3+2n-\sum_{k=2}^nS({\lfloor\frac nk\rfloor})
f(n)=n2−3n+2−d∣n,d<n∑f(d)∴S(n)=i=1∑n(i2−3i+2−d∣i,d<i∑f(d)) =i=1∑ni2−3i=1∑ni+2n−k=2∑nd=1∑⌊kn⌋f(d) =i=1∑ni2−3i=1∑ni+2n−k=2∑nS(⌊kn⌋) =3n(n+1)(n−4)+2n−k=2∑nS(⌊kn⌋)
如此一来就可以杜教筛了,然而仅仅这样还是会T,于是我们在想一想如何筛出前面一部分的fff值
令g(n)=n2−3n+2g(n)=n^2-3n+2g(n)=n2−3n+2,根据莫比乌斯反演
∴f(n)=∑d∣nμ(⌊nd⌋)g(d)
\therefore f(n)=\sum_{d|n}\mu(\lfloor\frac nd\rfloor)g(d)
∴f(n)=d∣n∑μ(⌊dn⌋)g(d)
于是用Θ(106ln(106))\Theta (10^6ln(10^6))Θ(106ln(106))筛出前10610^6106项就行了
总时间复杂度Θ(106ln(106)+T+5n23)\Theta(10^6ln(10^6)+T+5n^{\frac 23})Θ(106ln(106)+T+5n32)
AC code:
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <map>
using namespace std;
const int MAXN = 1000001;
const int mod = 1e9+7;
const int inv3 = 333333336;
inline int g(int n)
{
return (1ll * n * n % mod - 3ll * n % mod + 2) % mod;
}
int Prime[MAXN], Cnt, mu[MAXN], f[MAXN];
bool IsnotPrime[MAXN];
void init()
{
mu[1] = 1;
for(int i = 2; i < MAXN; ++i)
{
if(!IsnotPrime[i]) Prime[++Cnt] = i, mu[i] = -1;
for(int j = 1; j <= Cnt && i * Prime[j] < MAXN; ++j)
{
IsnotPrime[i * Prime[j]] = 1;
if(i % Prime[j] == 0)
{
mu[i * Prime[j]] = 0;
break;
}
mu[i * Prime[j]] = -mu[i];
}
}
for(int i = 1; i < MAXN; ++i)
for(int j = i; j < MAXN; j+=i)
f[j] = (f[j] + 1ll * mu[j/i] * g(i) % mod) % mod;
for(int i = 1; i < MAXN; ++i) f[i] = (f[i-1] + f[i]) % mod;
}
map<int,int>F;
inline int solve(int n)
{
if(n < MAXN) return f[n];
if(F.count(n)) return F[n];
int ret = (1ll * n * (n+1) % mod * (n-4) % mod * inv3 % mod + 2ll*n%mod) % mod;
for(int i = 2, j; i <= n; i=j+1)
{
j = n/(n/i);
ret = (ret - 1ll * (j-i+1) * solve(n/i) % mod) % mod;
}
return F[n]=ret;
}
int main()
{
init();
int T, n;
scanf("%d", &T);
while(T--)
{
scanf("%d", &n);
printf("%d\n", (solve(n)+mod)%mod);
}
}
[HDU 5608]Function(莫比乌斯反演 + 杜教筛)的更多相关文章
- [复习]莫比乌斯反演,杜教筛,min_25筛
[复习]莫比乌斯反演,杜教筛,min_25筛 莫比乌斯反演 做题的时候的常用形式: \[\begin{aligned}g(n)&=\sum_{n|d}f(d)\\f(n)&=\sum_ ...
- 【bzoj3930】[CQOI2015]选数 莫比乌斯反演+杜教筛
题目描述 我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案.小z很好奇这样选出的数的最大公约数的规律,他决定对每种方案选出的N个整数都求一次最大公约数,以便进一 ...
- [BZOJ 3930] [CQOI 2015]选数(莫比乌斯反演+杜教筛)
[BZOJ 3930] [CQOI 2015]选数(莫比乌斯反演+杜教筛) 题面 我们知道,从区间\([L,R]\)(L和R为整数)中选取N个整数,总共有\((R-L+1)^N\)种方案.求最大公约数 ...
- HDU 5608 function(莫比乌斯反演 + 杜教筛)题解
题意: 已知\(N^2-3N+2=\sum_{d|N}f(d)\),求\(\sum_{i=1}^nf(i) \mod 1e9+7\),\(n\leq1e9\) 思路: 杜教筛基础题? 很显然这里已经设 ...
- 【CCPC-Wannafly Winter Camp Day3 (Div1) F】小清新数论(莫比乌斯反演+杜教筛)
点此看题面 大致题意: 让你求出\(\sum_{i=1}^n\sum_{j=1}^n\mu(gcd(i,j))\). 莫比乌斯反演 这种题目,一看就是莫比乌斯反演啊!(连莫比乌斯函数都有) 关于莫比乌 ...
- 51nod 1237 最大公约数之和 V3【欧拉函数||莫比乌斯反演+杜教筛】
用mu写lcm那道卡常卡成狗(然而最后也没卡过去,于是写一下gcd冷静一下 首先推一下式子 \[ \sum_{i=1}^{n}\sum_{j=1}^{n}gcd(i,j) \] \[ \sum_{i= ...
- BSOJ5467 [CSPX2017#3]整数 莫比乌斯反演+杜教筛
题意简述 给你两个整数\(n\),\(k\),让你求出这个式子 \[ \sum_{a_1=1}^n \sum_{a_2=a_1}^n \sum_{a_3=a_2}^n \cdots \sum_{a_k ...
- 洛谷P3768 简单的数学题 莫比乌斯反演+杜教筛
题意简述 求出这个式子 \[ \sum_{i=1}^n\sum_{j=1}^n ij(i,j) \bmod p \] 做法 先用莫比乌斯反演拆一下式子 \[ \begin{split} \sum_{i ...
- 牛客练习赛84F-牛客推荐系统开发之下班【莫比乌斯反演,杜教筛】
正题 题目链接:https://ac.nowcoder.com/acm/contest/11174/F 题目大意 给出\(n,k\)求 \[\sum_{i_1=1}^n\sum_{i_2=1}^n.. ...
随机推荐
- Centos7.5 添加环境变量并生效
配置环境变量用户 jiangshan为例(base) [jiangshan@localhost ~]$ export PATH=$PATH:/usr/local/MATLAB/R2014a/bin/( ...
- [转帖]一文尽懂 USB4
一文尽懂 USB4 https://www.ithome.com/0/451/062.htm 今年 3 月份,USB Promoter Group(领导小组)首次发布了 USB4 规范,即下一代 US ...
- 如何理解MVC
在面试的时候,MVC这个概念考的次数很多,有许多人只能把三个字母解释成三个单词:model,view,controller,但是如果往深处说就说不出来什么东西了,对这个概念模糊不清,今天闲来无事看了一 ...
- Java基础IO类之字节数组流
package IODemo; //字节数组流 :内部维护这着一个字节数组,我们可以利用流的读取机制来处理字符串 无需关闭,不会报IO异常 // ByteArrayInputstream ByteAr ...
- C#进阶系列——WebApi接口返回值类型详解
阅读目录 一.void无返回值 二.IHttpActionResult 1.Json(T content) 2.Ok(). Ok(T content) 3.NotFound() 4.其他 5.自定义I ...
- Redis缓存如何保证一致性
为什么使用Redis做缓存 MySQL缺点 单机连接数目有限 对数据进行写速度慢 Redis优点 内存操作数据速度快 IO复用,速度快 单线程模型,避免线程切换带来的开销,速度快 一致性问题 读数据的 ...
- List、dictionary、hashtable、ArrayList集合
集合的引用命名空间在 system.Collections下 1.为什么引入集合 因为数组长度是固定的,为了建立一个动态的"数组",所以引入了集合. 2.为什么引入ArrayLis ...
- C#-Json-抽象类的反序列化
引用: using System; using System.Collections.Generic; using Newtonsoft.Json; using Newtonsoft.Json.Lin ...
- 转 使用IParameterInspector, IOperationBehavior,Attribute(参数检查器、操作行为接口和标签)扩展WCF操作行为
public class EntryIdInspector : IParameterInspector { public int intParamIndex { get; set; } string ...
- Python初识面向对象
初识面向对象 面向过程 VS 面向对象 面向过程的圣墟设计的核心是过程(流水线式思维),过程即解决问题的步骤,面向过程的设计就好比精心设计好一条流水线,考虑周全什么时候处理什么东西 优点是:极大的降低 ...