最短路--SPFA及其优化
SPFA Shortest Path Faster Algorithm 最短路径最快算法
算法思想
SPFA 算法是 Bellman-Ford算法 的队列优化算法的别称,通常用于求含负权边的单源最短路径,以及判负权环。SPFA 最坏情况下复杂度和朴素 Bellman-Ford 相同,为 O(VE)。
最简单的模板
#define pii pair<int,int>
vector<pii> a[maxn]; //邻接表,存图
int dis[maxn]; //距离
void spfa(int s) //s源点
{
mem(dis,inf); dis[s] = 0;
queue<int> q;q.push(s);
while (!q.empty())
{
s = q.front();q.pop();
for(auto i : a[s])
{
if(dis[i.first] > dis[s]+i.second)
{
dis[i.first] = dis[s]+i.second;
q.push(i.first);
}
}
}
}
判断是否存在负环
int dis[maxn];
bool vis[maxn];
int out[maxn]; //出队次数
bool spfa(int s)
{
mem(dis,inf);dis[s] = 0;
queue<int> q;q.push(s);
while(!q.empty())
{
s = q.front();q.pop();vis[s] = 0;
out[s]++;if(out[s] >= n) return false; //存在负环
for(auto i : a[s])
{
if(dis[i.first] > dis[s]+i.second)
{
dis[i.first] = dis[s]+i.second;
if(!vis[i.first])
{
vis[i.first] = 1;
q.push(i.first);
}
}
}
}
return true; //不存在负环
}
SLF优化
SLF优化,即 Small Label First 策略,使用 双端队列 进行优化。也可以手写双端队列
一般可以优化15%~20%,在竞赛中比较常用。
设从 u 扩展出了 v ,队列中队首元素为 k ,若 dis[ v ] < dis[ k ] ,则将 v 插入队首,否则插入队尾。
注:队列为空时直接插入队尾。
#define pii pair<int,int>
vector<pii> a[maxn]; //邻接表,存图
int dis[maxn]; //距离
bool vis[maxn]; //标记,表示该点当前是否在队列中,在的话就不用进队了
void spfa_slf(int s)
{
mem(dis,inf); dis[s] = 0;
deque <int> q; //正常队列新元素插入队尾,双端队列可以选择
q.push_back(s);
while(!q.empty())
{
s = q.front(); //队首
q.pop_front(); //队首pop
vis[s] = 0;
for(auto i : a[s])
{
if(!vis[i.first] && dis[i.first] > dis[s]+i.second)
{
vis[i.first] = 1;
dis[i.first] = dis[s]+i.second;
if(!q.empty() && dis[q.front()] > dis[i.first]) q.push_front(i.first); //插入队首
else q.push_back(i.first); //否则插入队尾
}
}
}
}
LLL优化
LLL优化,即 Large Label Last 策略,使用 双端队列 进行优化。
一般用SLF+LLL可以优化50%左右,但是在竞赛中并不常用LLL优化。
设队首元素为 k ,每次松弛时进行判断,队列中所有 dis 值的平均值为 x 。
若 dist[ k ] > x ,则将 k 插入到队尾,查找下一元素,直到找到某一个 k 使得 dis[ k ] <= x ,则将 k 出队进行松弛操作。
void spfa_lll(int s)
{
for(int i = 1;i <= n; i++) dis[i] = inf;
dis[s] = 0;
deque<int> q;
q.push_back(s);
ll x = 0; int num = 1; //x是队列元素的和,num是队列元素的个数
while(!q.empty())
{
s = q.front();
q.pop_front();
num--; x -= dis[s];
while (num && dis[s] > x/num) //和slf的唯一区别
{
q.push_back(s); //就把s放到队尾
s = q.front(); //另取s
q.pop_front();
}
vis[s] = 0;
for(auto i : a[s])
{
if(!vis[i.first] && dis[i.first] > dis[s]+i.second)
{
dis[i.first] = dis[s]+i.second;
vis[i.first] = 1;
if(!q.empty() && dis[i.first] > dis[q.front()]) q.push_front(i.first);
else q.push_back(i.first);
num++,x += dis[i.first];
}
}
}
}
swap优化
每当队列改变时,如果队首距离大于队尾,则交换首尾。
void spfa(int s) //swap
{
for(int i = 1;i <= n; i++) dis[i] = 1e18;
dis[s] = 0;
int l = 1e7,r = 1e7; //l是队首,r是队尾
q[l] = s;
while(l <= r)
{
s = q[l]; l++;
vis[s] = 0; //标记出队
for(auto i : a[s])
{
if(dis[i.first] > dis[s]+i.second)
{
dis[i.first] = dis[s]+i.second;
if(!vis[i.first]) //没必要重复进队
{
vis[i.first] = 1;
q[--l] = i.first;
if(l < r && dis[q[l]] > dis[q[r]]) swap(q[l],q[r]);
}
}
}
}
}
例题
参考博客
百度百科
https://www.cnblogs.com/Yangrui-Blog/p/8997721.html
https://www.cnblogs.com/dilthey/p/9583728.html
最短路--SPFA及其优化的更多相关文章
- 最短路--spfa+队列优化模板
spfa普通版就不写了,优化还是要的昂,spfa是可以判负环,接受负权边和重边的,判断负环只需要另开一个数组记录每个结点的入队次数,当有任意一个结点入队大于点数就表明有负环存在 #include< ...
- C++-POJ1502-MPI Maelstrom-[最短路][spfa][栈优化]
我不理解为什么写dijkska就WA呢? atoi()是个好东西,给你个颜色,自己体会 疑惑!疑惑!疑惑! #include <queue> #include <cstdio> ...
- 最短路模板(Dijkstra & Dijkstra算法+堆优化 & bellman_ford & 单源最短路SPFA)
关于几个的区别和联系:http://www.cnblogs.com/zswbky/p/5432353.html d.每组的第一行是三个整数T,S和D,表示有T条路,和草儿家相邻的城市的有S个(草儿家到 ...
- SPFA队列优化
spfa队列优化(用来求最短路) 实现方法: 1.存入图.可以使用链式前向星或者vocter. 2.开一个队列,先将开始的节点放入. 3.每次从队列中取出一个节点X,遍历与X相通的Y节点,查询比对 ...
- SPFA 小优化*2
/* bzoj 2763 SPFA小优化 循环队列+SLF 顺面改掉自己之前手打qeueu的坏毛病*/ #include<iostream> #include<cstring> ...
- HDU 1535 Invitation Cards(SPFA,及其优化)
题意: 有编号1-P的站点, 有Q条公交车路线,公交车路线只从一个起点站直接到达终点站,是单向的,每条路线有它自己的车费. 有P个人早上从1出发,他们要到达每一个公交站点, 然后到了晚上再返回点1. ...
- [BZOJ 2200][Usaco2011 Jan]道路和航线 spfa+SLF优化
Description Farmer John正在一个新的销售区域对他的牛奶销售方案进行调查.他想把牛奶送到T个城镇 (1 <= T <= 25,000),编号为1T.这些城镇之间通过R条 ...
- 【最短路径】 SPFA算法优化
首先先明确一个问题,SPFA是什么?(不会看什么看,一边学去,传送门),SPFA是bellman-ford的队列优化版本,只有在国内才流行SPFA这个名字,大多数人就只知道SPFA就是一个顶尖的高效算 ...
- L - Subway(最短路spfa)
L - Subway(最短路spfa) You have just moved from a quiet Waterloo neighbourhood to a big, noisy city. In ...
随机推荐
- (5)Spring Boot web开发 --- Restful CRUD
文章目录 `@RestController` vs `@Controller` 默认访问首页 设置项目名 国际化 登陆 & 拦截 Restful 风格 @RestController vs @ ...
- go select 使得一个 goroutine 在多个通讯操作上等待。
select 语句使得一个 goroutine 在多个通讯操作上等待. select 会阻塞,直到条件分支中的某个可以继续执行,这时就会执行那个条件分支.当多个都准备好的时候,会随机选择一个. pac ...
- EF Core 2.0 执行原始查询如何防止SQL注入
using (var context = new EFCoreDbContext()) { var searchString = "Jeffcky Wang"; Formattab ...
- PIE二次开发——大气校正
窗体设计: 代码: private void button_src_Click(object sender, EventArgs e) { OpenFileDialog openFile = new ...
- jQuery 事件介绍
什么是事件?页面对不同访问者的响应叫做事件.事件处理程序指的是当 HTML 中发生某些事件时所调用的方法. 常用的时间主要有以下几种: click()事件:click() 方法是当按钮点击事件被触发时 ...
- 安卓开发之cache 的使用(图片查看器案例)
package com.lidaochen.test; import android.graphics.Bitmap; import android.graphics.BitmapFactory; i ...
- stm32 CAN通信 TJA1040
CAN协议特点 1.多主控制 所有单元都可以发送消息,根据标识符(Identifier简称ID)决定优先级.仲裁获胜(被判定为优先级最高)的单元可继续发送消息,仲裁失利的单元则立刻停止发送而进行接收工 ...
- Nginx的反向代理和负载均衡服务
Nginx (engine x) 是一个高性能的HTTP和反向代理服务,也是一款轻量级的Web 服务器/反向代理服务器及电子邮件(IMAP/POP3)代理服务器,并在一个BSD-like 协议下发行. ...
- 一语道破Java 11的ZGC为何如此高效
GC是大部分现代语言内置的特性,Java 11 新加入的ZGC号称可以达到10ms 以下的 GC 停顿,本文作者对这一新功能进行了深入解析.同时还对还对这一新功能带来的其他可能性做了展望.ZGC是否可 ...
- git 打tag标着版本
1.git tag v1.0 2.git push origin v1.0