传送门

思路

这么一道签到题竟然没切掉真是丢人呢……

首先有一个\(O(3^n)\)的SB方法,记录\(dp_{S,T}\)表示已经填进去了\(S\),当前最大前缀和集合为\(T\),随便转移。太简单了就不细讲了。

挖掘一下题目的性质:一个序列必然可以被分成两部分:前面的前缀和&后面的部分。

后面的部分满足一个性质:任意前缀和都<0,所以很容易DP。

前面可以考虑每次往数列前面加数,那么就必须要满足原来的数列总和\(\ge 0\),也很容易DP,具体可以见代码。

然后就做完了……我这都不会真是菜死了……

代码

#include<bits/stdc++.h>
clock_t t=clock();
namespace my_std{
using namespace std;
#define pii pair<int,int>
#define fir first
#define sec second
#define MP make_pair
#define rep(i,x,y) for (int i=(x);i<=(y);i++)
#define drep(i,x,y) for (int i=(x);i>=(y);i--)
#define go(x) for (int i=head[x];i;i=edge[i].nxt)
#define templ template<typename T>
#define sz 1100000
#define mod 998244353ll
typedef long long ll;
typedef double db;
mt19937 rng(chrono::steady_clock::now().time_since_epoch().count());
templ inline T rnd(T l,T r) {return uniform_int_distribution<T>(l,r)(rng);}
templ inline bool chkmax(T &x,T y){return x<y?x=y,1:0;}
templ inline bool chkmin(T &x,T y){return x>y?x=y,1:0;}
templ inline void read(T& t)
{
t=0;char f=0,ch=getchar();double d=0.1;
while(ch>'9'||ch<'0') f|=(ch=='-'),ch=getchar();
while(ch<='9'&&ch>='0') t=t*10+ch-48,ch=getchar();
if(ch=='.'){ch=getchar();while(ch<='9'&&ch>='0') t+=d*(ch^48),d*=0.1,ch=getchar();}
t=(f?-t:t);
}
template<typename T,typename... Args>inline void read(T& t,Args&... args){read(t); read(args...);}
char __sr[1<<21],__z[20];int __C=-1,__zz=0;
inline void Ot(){fwrite(__sr,1,__C+1,stdout),__C=-1;}
inline void print(register int x)
{
if(__C>1<<20)Ot();if(x<0)__sr[++__C]='-',x=-x;
while(__z[++__zz]=x%10+48,x/=10);
while(__sr[++__C]=__z[__zz],--__zz);__sr[++__C]='\n';
}
void file()
{
#ifdef NTFOrz
freopen("a.in","r",stdin);
#endif
}
inline void chktime()
{
#ifndef ONLINE_JUDGE
cout<<(clock()-t)/1000.0<<'\n';
#endif
}
#ifdef mod
ll ksm(ll x,int y){ll ret=1;for (;y;y>>=1,x=x*x%mod) if (y&1) ret=ret*x%mod;return ret;}
ll inv(ll x){return ksm(x,mod-2);}
#else
ll ksm(ll x,int y){ll ret=1;for (;y;y>>=1,x=x*x) if (y&1) ret=ret*x;return ret;}
#endif
// inline ll mul(ll a,ll b){ll d=(ll)(a*(double)b/mod+0.5);ll ret=a*b-d*mod;if (ret<0) ret+=mod;return ret;}
}
using namespace my_std; int n;
int a[25];
int sum[sz];
ll f[sz],g[sz]; ll fac[sz];
void init(){fac[0]=1;rep(i,1,sz-1) fac[i]=fac[i-1]*i%mod;} int main()
{
file();
init();
read(n);
rep(i,1,n) read(a[i]);
int N=(1<<n)-1;
rep(i,0,N) rep(j,0,n-1) if (i>>j&1) sum[i]+=a[j+1];
g[0]=1;
rep(i,0,N-1)
rep(j,1,n)
if (!(i>>(j-1)&1)&&sum[i|(1<<(j-1))]<0)
(g[i|(1<<(j-1))]+=g[i])%=mod;
f[0]=1;
rep(i,0,N-1)
if (sum[i]>=0)
rep(j,0,n-1)
if (!(i>>j&1))
(f[i|(1<<j)]+=f[i])%=mod;
ll ans=0;
rep(i,1,N) (ans+=f[i]*g[N^i]%mod*sum[i]%mod)%=mod;
cout<<(ans+mod)%mod;
return 0;
}

洛谷P5369 [PKUSC2018]最大前缀和 [DP]的更多相关文章

  1. 洛谷P2507 [SCOI2008]配对 题解(dp+贪心)

    洛谷P2507 [SCOI2008]配对 题解(dp+贪心) 标签:题解 阅读体验:https://zybuluo.com/Junlier/note/1299251 链接题目地址:洛谷P2507 [S ...

  2. 洛谷 P3177 [HAOI2015]树上染色 树形DP

    洛谷 P3177 [HAOI2015]树上染色 树形DP 题目描述 有一棵点数为 \(n\) 的树,树边有边权.给你一个在 \(0 \sim n\)之内的正整数 \(k\) ,你要在这棵树中选择 \( ...

  3. 洛谷 P4072 [SDOI2016]征途 斜率优化DP

    洛谷 P4072 [SDOI2016]征途 斜率优化DP 题目描述 \(Pine\) 开始了从 \(S\) 地到 \(T\) 地的征途. 从\(S\)地到\(T\)地的路可以划分成 \(n\) 段,相 ...

  4. 洛谷P1470 最长前缀

    P1470 最长前缀 Longest Prefix 题目描述 在生物学中,一些生物的结构是用包含其要素的大写字母序列来表示的.生物学家对于把长的序列分解成较短的序列(即元素)很感兴趣. 如果一个集合 ...

  5. 洛谷 P5469 - [NOI2019] 机器人(区间 dp+拉格朗日插值)

    洛谷题面传送门 神仙题,放在 D1T2 可能略难了一点( 首先显然对于 P 型机器人而言,将它放在 \(i\) 之后它会走到左边第一个严格 \(>a_i\) 的位置,对于 Q 型机器人而言,将它 ...

  6. 洛谷P1880 石子合并(区间DP)(环形DP)

    To 洛谷.1880 石子合并 题目描述 在一个园形操场的四周摆放N堆石子,现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆合并成新的一堆,并将新的一堆的石子数,记为该次合并的得分. 试设计出1 ...

  7. 洛谷P1063 能量项链(区间DP)(环形DP)

    To 洛谷.1063 能量项链 题目描述 在Mars星球上,每个Mars人都随身佩带着一串能量项链.在项链上有N颗能量珠.能量珠是一颗有头标记与尾标记的珠子,这些标记对应着某个正整数.并且,对于相邻的 ...

  8. 洛谷P1282 多米诺骨牌 (DP)

    洛谷P1282 多米诺骨牌 题目描述 多米诺骨牌有上下2个方块组成,每个方块中有1~6个点.现有排成行的 上方块中点数之和记为S1,下方块中点数之和记为S2,它们的差为|S1-S2|.例如在图8-1中 ...

  9. 【题解】洛谷P4158 [SCOI2009] 粉刷匠(DP)

    次元传送门:洛谷P4158 思路 f[i][j][k][0/1]表示在坐标为(i,j)的格子 已经涂了k次 (0是此格子涂错 1是此格子涂对)涂对的格子数 显然的是 每次换行都要增加一次次数 那么当j ...

随机推荐

  1. ckplayer获取播放时长一

    <div id="a1"></div> <div id="nowTime"></div> <script ...

  2. hdu 4745 two Rabits

    题目:http://acm.hdu.edu.cn/showproblem.php?pid=4745 题解:首先要抽象出题目要求的是啥.首先对于环的问题, 我们可以倍增成链,然后环的所有情况可以通过链来 ...

  3. sql注入测试(1)---概念概述

    在进行java web 测试时,经常会忽略的测试种类就是sql注入测试,这类缺陷造成的原因是开发技术在这方面欠缺的表现,虽然不常见,但一旦有这类缺陷,就很因此对运营的数据造成很多不必要的损失,所以,还 ...

  4. MarkDown 语法记录

    Markdown是一种纯文本格式的标记语言.通过简单的标记语法,它可以使普通文本内容具有一定的格式. 为啥要用 MarkDown 呢? 优点 1.因为是纯文本,所以只要支持Markdown的地方都能获 ...

  5. .NET Core 发布部署问题

    运行环境      操作系统                  开发工具      frameworks     .Net Core SDK 版本             托管运行 本地        ...

  6. Django 之一些request封装的常用功能

    一些常用的request对象属性 介绍 HTTP 应用的信息是通过 请求报文 和 响应报文 传递的,关于更多的相关知识,可以阅读<HTTP权威指南>获得. 其中 请求报文 由客户端发送,其 ...

  7. [书籍翻译] 《JavaScript并发编程》第四章 使用Generators实现惰性计算

    本文是我翻译<JavaScript Concurrency>书籍的第四章 使用Generators实现惰性计算,该书主要以Promises.Generator.Web workers等技术 ...

  8. 如何画svg路径图

    在画路径图之前,首先得在package.json引入2个依赖 废话不多说,直接上代码 <style> .green { position: absolute; } .blue { posi ...

  9. MyCAT详解【转】

    原文链接:MyCAT详解 作者:Rangle 一.MyCAT概述MyCAT是一款由阿里Cobar演变而来的用于支持数据库读写分离.分片的分布式中间件.MyCAT可不但支持Oracle.MSSQL.MY ...

  10. ffmpeg 命令的使用

    当然先安装了 gentoo 下一条命令搞定 emerge  ffmpeg 格式转换 (将file.avi 转换成output.flv) ffmpeg -i  file.avi  output.flv ...