1        问题描述

一条SQL,在数据库中是如何执行的呢?相信很多人都会对这个问题比较感兴趣。当然,要完整描述一条SQL在数据库中的生命周期,这是一个非常巨大的问题,涵盖了SQL的词法解析、语法解析、权限检查、查询优化、SQL执行等一系列的步骤,简短的篇幅是绝对无能为力的。因此,本文挑选了其中的部分内容,也是我一直都想写的一个内容,做重点介绍:

给定一条SQL,如何提取其中的where条件?where条件中的每个子条件,在SQL执行的过程中有分别起着什么样的作用?

 

通过本文的介绍,希望读者能够更好地理解查询条件对于SQL语句的影响;撰写出更为优质的SQL语句;更好地理解一些术语,例如:MySQL 5.6中一个重要的优化——Index Condition Pushdown,究竟push down了什么?

本文接下来的内容,安排如下:

  1. 简单介绍关系型数据库中数据的组织形式;
  2. 给定一条SQL,如何提取其中的where条件;
  3. 最后做一个小的总结;

2        关系型数据库中的数据组织

关系型数据库中,数据组织涉及到两个最基本的结构:表与索引。表中存储的是完整记录,一般有两种组织形式:堆表(所有的记录无序存储),或者是聚簇索引表(所有的记录,按照记录主键进行排序存储)。索引中存储的是完整记录的一个子集,用于加速记录的查询速度,索引的组织形式,一般均为B+树结构。

有了这些基本知识之后,接下来让我们创建一张测试表,为表新增几个索引,然后插入几条记录,最后看看表的完整数据组织、存储结构式怎么样的。(注意:下面的实例,使用的表的结构为堆表形式,这也是Oracle/DB2/PostgreSQL等数据库采用的表组织形式,而不是InnoDB引擎所采用的聚簇索引表。其实,表结构采用何种形式并不重要,最重要的是理解下面章节的核心,在任何表结构中均适用)

create table t1 (a int primary key, b int, c int, d int, e varchar(20));

create index idx_t1_bcd on t1(b, c, d);

insert into t1 values (4,3,1,1,’d’);

insert into t1 values (1,1,1,1,’a’);

insert into t1 values (8,8,8,8,’h’):

insert into t1 values (2,2,2,2,’b’);

insert into t1 values (5,2,3,5,’e’);

insert into t1 values (3,3,2,2,’c’);

insert into t1 values (7,4,5,5,’g’);

insert into t1 values (6,6,4,4,’f’);

t1表的存储结构如下图所示(只画出了idx_t1_bcd索引与t1表结构,没有包括t1表的主键索引):

简单分析一下上图,idx_t1_bcd索引上有[b,c,d]三个字段(注意:若是InnoDB类的聚簇索引表,idx_t1_bcd上还会包括主键a字段),不包括[a,e]字段。idx_t1_bcd索引,首先按照b字段排序,b字段相同,则按照c字段排序,以此类推。记录在索引中按照[b,c,d]排序,但是在堆表上是乱序的,不按照任何字段排序。

3        SQL的where条件提取

在有了以上的t1表之后,接下来就可以在此表上进行SQL查询了,获取自己想要的数据。例如,考虑以下的一条SQL:

select * from t1 where b >= 2 and b < 8 and c > 1 and d != 4 and e != ‘a’;

一条比较简单的SQL,一目了然就可以发现where条件使用到了[b,c,d,e]四个字段,而t1表的idx_t1_bcd索引,恰好使用了[b,c,d]这三个字段,那么走idx_t1_bcd索引进行条件过滤,应该是一个不错的选择。接下来,让我们抛弃数据库的思想,直接思考这条SQL的几个关键性问题:

l         此SQL,覆盖索引idx_t1_bcd上的哪个范围?

起始范围:记录[2,2,2]是第一个需要检查的索引项。索引起始查找范围由b >= 2,c > 1决定。

终止范围:记录[8,8,8]是第一个不需要检查的记录,而之前的记录均需要判断。索引的终止查找范围由b < 8决定;

2        在确定了查询的起始、终止范围之后,SQL中还有哪些条件可以使用索引idx_t1_bcd过滤?

根据SQL,固定了索引的查询范围[(2,2,2),(8,8,8))之后,此索引范围中并不是每条记录都是满足where查询条件的。例如:(3,1,1)不满足c > 1的约束;(6,4,4)不满足d != 4的约束。而c,d列,均可在索引idx_t1_bcd中过滤掉不满足条件的索引记录的。

因此,SQL中还可以使用c > 1 and d != 4条件进行索引记录的过滤。

3        在确定了索引中最终能够过滤掉的条件之后,还有哪些条件是索引无法过滤的?

此问题的答案显而易见,e != ‘a’这个查询条件,无法在索引idx_t1_bcd上进行过滤,因为索引并未包含e列。e列只在堆表上存在,为了过滤此查询条件,必须将已经满足索引查询条件的记录回表,取出表中的e列,然后使用e列的查询条件e != ‘a’进行最终的过滤。

在理解以上的问题解答的基础上,做一个抽象,可总结出一套放置于所有SQL语句而皆准的where查询条件的提取规则:

所有SQLwhere条件,均可归纳为3大类:Index Key (First Key & Last Key)Index FilterTable Filter

接下来,让我们来详细分析者3大类分别是如何定义,以及如何提取的。

l         Index Key

用于确定SQL查询在索引中的连续范围(起始范围+结束范围)的查询条件,被称之为Index Key。由于一个范围,至少包含一个起始与一个终止,因此Index Key也被拆分为Index First Key和Index Last Key,分别用于定位索引查找的起始,以及索引查询的终止条件。

Index First Key

用于确定索引查询的起始范围。提取规则:从索引的第一个键值开始,检查其在where条件中是否存在,若存在并且条件是=、>=,则将对应的条件加入Index First Key之中,继续读取索引的下一个键值,使用同样的提取规则;若存在并且条件是>,则将对应的条件加入Index First Key中,同时终止Index First Key的提取;若不存在,同样终止Index First Key的提取。

针对上面的SQL,应用这个提取规则,提取出来的Index First Key为(b >= 2, c > 1)。由于c的条件为 >,提取结束,不包括d。

Index Last Key

Index Last Key的功能与Index First Key正好相反,用于确定索引查询的终止范围。提取规则:从索引的第一个键值开始,检查其在where条件中是否存在,若存在并且条件是=、<=,则将对应条件加入到Index Last Key中,继续提取索引的下一个键值,使用同样的提取规则;若存在并且条件是 < ,则将条件加入到Index Last Key中,同时终止提取;若不存在,同样终止Index Last Key的提取。

针对上面的SQL,应用这个提取规则,提取出来的Index Last Key为(b < 8),由于是 < 符号,因此提取b之后结束。

2         Index Filter

在完成Index Key的提取之后,我们根据where条件固定了索引的查询范围,但是此范围中的项,并不都是满足查询条件的项。在上面的SQL用例中,(3,1,1),(6,4,4)均属于范围中,但是又均不满足SQL的查询条件。

Index Filter的提取规则:同样从索引列的第一列开始,检查其在where条件中是否存在:若存在并且where条件仅为 =,则跳过第一列继续检查索引下一列,下一索引列采取与索引第一列同样的提取规则;若where条件为 >=、>、<、<= 其中的几种,则跳过索引第一列,将其余where条件中索引相关列全部加入到Index Filter之中;若索引第一列的where条件包含 =、>=、>、<、<= 之外的条件,则将此条件以及其余where条件中索引相关列全部加入到Index Filter之中;若第一列不包含查询条件,则将所有索引相关条件均加入到Index Filter之中。

针对上面的用例SQL,索引第一列只包含 >=、< 两个条件,因此第一列可跳过,将余下的c、d两列加入到Index Filter中。因此获得的Index Filter为 c > 1 and d != 4 。

3         Table Filter

Table Filter是最简单,最易懂,也是提取最为方便的。提取规则:所有不属于索引列的查询条件,均归为Table Filter之中。

同样,针对上面的用例SQL,Table Filter就为 e != ‘a’。

3.1 Index Key/Index Filter/Table Filter小结 

SQL语句中的where条件,使用以上的提取规则,最终都会被提取到Index Key (First Key & Last Key),Index Filter与Table Filter之中。

Index First Key,只是用来定位索引的起始范围,因此只在索引第一次Search Path(沿着索引B+树的根节点一直遍历,到索引正确的叶节点位置)时使用,一次判断即可;

Index Last Key,用来定位索引的终止范围,因此对于起始范围之后读到的每一条索引记录,均需要判断是否已经超过了Index Last Key的范围,若超过,则当前查询结束;

Index Filter,用于过滤索引查询范围中不满足查询条件的记录,因此对于索引范围中的每一条记录,均需要与Index Filter进行对比,若不满足Index Filter则直接丢弃,继续读取索引下一条记录;

Table Filter,则是最后一道where条件的防线,用于过滤通过前面索引的层层考验的记录,此时的记录已经满足了Index First Key与Index Last Key构成的范围,并且满足Index Filter的条件,回表读取了完整的记录,判断完整记录是否满足Table Filter中的查询条件,同样的,若不满足,跳过当前记录,继续读取索引的下一条记录,若满足,则返回记录,此记录满足了where的所有条件,可以返回给前端用户。

4        结语

在读完、理解了以上内容之后,详细大家对于数据库如何提取where中的查询条件,如何将where中的查询条件提取为Index Key,Index Filter,Table Filter有了深刻的认识。以后在撰写SQL语句时,可以对照表的定义,尝试自己提取对应的where条件,与最终的SQL执行计划对比,逐步强化自己的理解。

同时,我们也可以回答文章开始提出的一个问题:MySQL 5.6中引入的Index Condition Pushdown,究竟是将什么Push Down到索引层面进行过滤呢?对了,答案是Index Filter。在MySQL 5.6之前,并不区分Index Filter与Table Filter,统统将Index First Key与Index Last Key范围内的索引记录,回表读取完整记录,然后返回给MySQL Server层进行过滤。而在MySQL 5.6之后,Index Filter与Table Filter分离,Index Filter下降到InnoDB的索引层面进行过滤,减少了回表与返回MySQL Server层的记录交互开销,提高了SQL的执行效率。

MySQL 5.6 中一个重要的优化——Index Condition Pushdown,究竟push down了什么的更多相关文章

  1. MySQL 并行复制演进及 MySQL 8.0 中基于 WriteSet 的优化

    MySQL 8.0 可以说是MySQL发展历史上里程碑式的一个版本,包括了多个重大更新,目前 Generally Available 版本已经已经发布,正式版本即将发布,在此将介绍8.0版本中引入的一 ...

  2. MySQL 优化之 ICP (index condition pushdown:索引条件下推)

    ICP技术是在MySQL5.6中引入的一种索引优化技术.它能减少在使用 二级索引 过滤where条件时的回表次数 和 减少MySQL server层和引擎层的交互次数.在索引组织表中,使用二级索引进行 ...

  3. 浅析MySQL中的Index Condition Pushdown (ICP 索引条件下推)和Multi-Range Read(MRR 索引多范围查找)查询优化

    本文出处:http://www.cnblogs.com/wy123/p/7374078.html(保留出处并非什么原创作品权利,本人拙作还远远达不到,仅仅是为了链接到原文,因为后续对可能存在的一些错误 ...

  4. MySQL 执行计划中Extra(Using where,Using index,Using index condition,Using index,Using where)的浅析

      关于如何理解MySQL执行计划中Extra列的Using where.Using Index.Using index condition,Using index,Using where这四者的区别 ...

  5. MySQL 中Index Condition Pushdown (ICP 索引条件下推)和Multi-Range Read(MRR 索引多范围查找)查询优化

    一.ICP优化原理 Index Condition Pushdown (ICP),也称为索引条件下推,体现在执行计划的上是会出现Using index condition(Extra列,当然Extra ...

  6. 1229【MySQL】性能优化之 Index Condition Pushdown

    转自http://blog.itpub.net/22664653/viewspace-1210844/  [MySQL]性能优化之 Index Condition Pushdown2014-07-06 ...

  7. 【MySQL】性能优化之 Index Condition Pushdown

    一 概念介绍    Index Condition Pushdown (ICP)是MySQL 5.6 版本中的新特性,是一种在存储引擎层使用索引过滤数据的一种优化方式.a 当关闭ICP时,index ...

  8. MySQL索引与Index Condition Pushdown

    实际上,这个页面所讲述的是在MariaDB 5.3.3(MySQL是在5.6)开始引入的一种叫做Index Condition Pushdown(以下简称ICP)的查询优化方式.由于本身不是一个层面的 ...

  9. MySQL 5.6 Index Condition Pushdown

    ICP(index condition pushdown)是mysql利用索引(二级索引)元组和筛字段在索引中的where条件从表中提取数据记录的一种优化操作.ICP的思想是:存储引擎在访问索引的时候 ...

随机推荐

  1. IDEA忽略不必要提交的文件

    1.在idea中安装插件用来生成和管理 .gitignore 文件,安装成功后重启idea 2.新建.gitignore 文件 3.将不需要提交的文件添加到.gitignore  4.删除缓冲文件 . ...

  2. JS基础_函数作用域练习

    <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title> ...

  3. Java内存模型(JMM)

    JVM与线程(线程在JVM中) 1.JVM什么时候启动?         类被调用时启动,此时会启动JVM线程然后再是其他的线程(main) 2.JVM内存区域 除了程序计数器(PC)之外都有可能发生 ...

  4. mac OS下 安装MySQL 5.7

    Mac OS X 下 TAR.GZ 方式安装 MySQL 5.7 与 MySQL 5.6 相比, 5.7 版本在安装时有两处不同: 1:初始化方式改变, 从scripts/mysql_install_ ...

  5. 空a标签在IE下无效之解决方法

    过程就不分析了,只说解决方法: 1.给a标签添加样式:background:url(about:blank); 2.给a标签随便添加背景色或者背景图片,然后将a标签的透明度设置为0,不过在IE中需要使 ...

  6. vue 钩子函数的初接触

    vue-router的路由钩子函数: 第一种:全局钩子函数. router.beforeEach((to, from, next) => { console.log('beforeEach') ...

  7. 下拉框选择 <from:select>

  8. BP神经网络—java实现

    神经网络的结构 神经网络的网络结构由输入层,隐含层,输出层组成.隐含层的个数+输出层的个数=神经网络的层数,也就是说神经网络的层数不包括输入层.下面是一个三层的神经网络,包含了两层隐含层,一个输出层. ...

  9. h5 移动端开发自适应 meta name="viewport"的使用总结

    本文系个人理解,可能有误差,仅供参考,谨慎采纳! 布局视口: 系统自带 一般大于屏幕宽度 理想宽度:  设置页面的viewport 的一个宽度,使不同的手机的布局视口宽度尽量接近可视窗口的值: 可视视 ...

  10. windows使用zip包安装mysql8.0.12

    1.前言 在windows下有两种安装mysql的方式,一种是msi的方式,一种是使用zip包的安装方式.通常都是用msi的方式,毕竟不需要敲命令,只用图形界面就可以完成安装.zip包的安装方式也很简 ...